Publication:
Influence of the aging model of lithium-ion batteries on the management of PV self-consumption systems

Consultable a partir de

Date

2018

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//DPI2013-42853-R/ES/
ES/1PE/DPI2016-80641-R
ES/1PE/DPI2016-80642-R

Abstract

Lithium-ion batteries are gaining importance for a variety of applications due to their improving characteristics and decreasing price. An accurate knowledge of their aging is required for a successful use of these ESSs. The vast number of models that has been proposed to predict these phenomena raise doubts about the suitability of a model for a particular battery application. The performance of three models published for a Sanyo 18650 cylindrical cell in a self-consumption system are compared in this work. Measured photovoltaic production and home consumption with a sampling frequency of 15 minutes are used for this comparison. The different aging predictions calculated by these three models are analyzed, compared and discussed. These comparison is particularized for two management strategies. The first of them maximizes the self-consumption PV energy, while the second reduces the maximum power peak demanded from the grid.

Keywords

Lithium-ion battery, Aging model, Renewable energy, Microgrid, Battery management

Department

Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

The authors would like to acknowledge the support of the Spanish State Research Agency (AEI) and FEDER-UE under grants DPI2013-42853-R, DPI2016-80641-R and DPI2016-80642-R; of Government of Navarra through research project PI038 INTEGRA-RENOVABLES; and the FPU Program of the Spanish Ministry of Education, Culture and Sport (FPU13/00542).

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.