UrsĂșa Rubio, Alfredo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
UrsĂșa Rubio
First Name
Alfredo
person.page.departamento
IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
17 results
Search Results
Now showing 1 - 10 of 17
Publication Open Access Influence of renewable power fluctuations on the lifetime prediction of lithium-ion batteries in a microgrid environment(IEEE, 2019) Soto Cabria, AdriĂĄn; Berrueta Irigoyen, Alberto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako GobernuaThis contribution analyses lifetime estimation errors due to the effect of power fluctuations in lithium-ion batteries connected to microgrids when different time steps are used for the calculations. Usually, not every second data are available or the computational cost is excessively high. Those facts result in the use of larger time steps. However, the increase of the time steps may turn out in too optimistic predictions. Data from a real microgrid make it possible to optimize calculation times while keeping low errors. The results show that when 1 minute time step is set, the computation time is reduced by 14.4 times while the lifetime overstatement is only 3.5-5.2% higher, depending on the aging model.Publication Open Access Impact of micro-cycles on the lifetime of lithium-ion batteries: an experimental study(Elsevier, 2022) Soto Cabria, AdriĂĄn; Berrueta Irigoyen, Alberto; Mateos Inza, Miren; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa Gobierno de Navarra / Nafarroako GobernuaExperimental aging studies are commonly conducted on lithium-ion batteries by full charge and discharge cycles. However, such profiles may differ from the actual operation of batteries in electric vehicles and stationary applications, where they are subjected to different partial charges and discharges. These partial cycles, which take place during a main charge or discharge process, are called micro-cycles if their depth of discharge is <2 %. A number of authors have pointed out the relevance of the time resolution to estimate the energy throughput of a battery due to these micro-cycles in applications such as renewable microgrids. However, to the best of our knowledge, there are no experimental studies in the literature that assess the impact of these micro-cycles on battery degradation. In this article, the impact of micro-cycles on the loss of performance of a lithium-ion battery is experimentally studied. The results show that micro-cycles have a negligible, or even positive effect on the aging of lithium-ion cells compared to the aging caused by full cycles. In fact, if charge throughput or equivalent full cycles are used to measure the use of a battery, then cells subjected to micro-cycles exhibit a 50 % extended lifetime compared to cells only subjected to full cycles. More precisely, cells including micro-cycles with depth of discharge of 0.5 % lasted for nearly 3000 equivalent full cycles, whereas cells aged under standard deep cycles lasted for no >1500. Nevertheless, if the number of deep cycles, disregarding micro-cycles, is the unit to measure battery use, then the degradation of cells with and without micro-cycles is similar. Based on this result, the number of cycles can be identified as a more accurate variable to measure the use of a cell, in comparison to charge throughput.Publication Open Access Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants(Elsevier, 2018) Berrueta Irigoyen, Alberto; Heck, Michael; Jantsch, Martin; UrsĂșa Rubio, Alfredo; Sanchis GĂșrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako Gobernua PI038 INTEGRA-RENOVABLESThe unpredictable nature of renewable energies is drawing attention to lithium-ion batteries. In order to make full utilization of these batteries, some research works are focused on the management of existing systems, while others propose sizing techniques based on business models. However, in order to optimise the global system, a comprehensive methodology that considers both battery sizing and management at the same time is needed. This paper proposes a new optimisation algorithm based on a combination of dynamic programming and a region elimination technique that makes it possible to address both problems at the same time. This is of great interest, since the optimal size of the storage system depends on the management strategy and, in turn, the design of this strategy needs to take account of the battery size. The method is applied to a real installation consisting of a 100 kWp rooftop photovoltaic plant and a Li-ion battery system connected to a grid with variable electricity price. Results show that, unlike conventional optimisation methods, the proposed algorithm reaches an optimised energy dispatch plan that leads to a higher net present value. Finally, the tool is used to provide a sensitivity analysis that identifies key informative variables for decision makersPublication Open Access Identification of critical parameters for the design of energy management algorithms for Li-ion batteries operating in PV power plants(IEEE, 2020) Berrueta Irigoyen, Alberto; Soto Cabria, AdriĂĄn; Marcos Ălvarez, Javier; Parra Laita, Ăñigo de la; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2018-000029 GERALithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. For a proper use of such storage systems, an energy management algorithm (EMA) is required. A number of EMAs, with various characteristics, have been published recently, given the diverse nature of battery problems. The EMA of deterministic battery problems is usually based on an optimization algorithm. The selection of such an algorithm depends on a few problem characteristics, which need to be identified and closely analyzed. The aim of this article is to identify the critical optimization problem parameters that determine the most suitable EMA for a Li-ion battery. With this purpose, the starting point is a detailed model of a Li-ion battery. Three EMAs based on the algorithms used to face deterministic problems, namely dynamic, linear, and quadratic programming, are designed to optimize the energy dispatch of such a battery. Using real irradiation and power price data, the results of these EMAs are compared for various case studies. Given that none of the EMAs achieves the best results for all analyzed cases, the problem parameters that determine the most suitable algorithm are identified to be four, i.e., desired computation intensity, characteristics of the battery aging model, battery energy and power capabilities, and the number of optimization variables, which are determined by the number of energy storage systems, the length of the optimization problem, and the desired time step.Publication Open Access Dynamic modeling of a pressurized alkaline water electrolyzer: a multiphysics approach(IEEE, 2023) Iribarren Zabalegui, Ălvaro; Elizondo MartĂnez, David; Barrios RĂpodas, Ernesto; Ibaiondo, Harkaitz; SĂĄnchez Ruiz, Alain; Arza, Joseba; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper a dynamic model for the simulation of pressurized alkaline water electrolyzers is presented. The model has been developed following a multiphysics approach, integrating electrochemical, thermodynamic, heat transfer and gas evolution processes in order to faithfully reproduce the complete dynamical behavior of these systems. The model has been implemented on MATLAB/Simulink and validated through experimental data from a 1 Nm3/h commercial alkaline water electrolyzer. Validations have been performed under real scenarios where the electrolyzer is working with power profiles characteristic from renewable sources, wind and photovoltaic. The simulated results have been found to be consistent with the real measured values. This model has a great potential to predict the behavior of alkaline water electrolyzers coupled with renewable energy sources, making it a very useful tool for designing efficient green hydrogen production systems.Publication Open Access Energy management for an electro-thermal renewable based residential microgrid with energy balance forecasting and demand side management(Elsevier, 2021) Pascual Miqueleiz, Julio MarĂa; Arcos AvilĂ©s, Diego; UrsĂșa Rubio, Alfredo; Sanchis GĂșrpide, Pablo; Marroyo Palomo, Luis; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper proposes an energy management strategy for a residential microgrid comprising photovoltaic (PV) panels, a small wind turbine and solar thermal collectors. The microgrid can control the power exchanged with the grid thanks to a battery and a controllable electric water heater, which provide two degrees of freedom to the control strategy. As input data, the proposed control strategy uses the battery state of charge (SOC), the temperature of the hot water tank, the power of each microgrid element as well as the demand and renewable generation forecasts. By using forecasted data and by controlling the electric water heater, the strategy is able to achieve a better grid power profile while using a smaller battery than previous works, hence reducing the overall cost of the system. The strategy is tested by means of simulation with real data for one year and it is also experimentally validated in the microgrid built at the Renewable Energy Laboratory at the UPNA.Publication Open Access Characterization and capacity dispersion of lithium-ion second-life batteries from electric vehicles(IEEE, 2019) Braco Sola, Elisa; San MartĂn Biurrun, Idoia; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Gobierno de Navarra / Nafarroako GobernuaNowadays, electric vehicle batteries reutilization is considered such as a feasible alternative to recycling, as it allows to benefit from their remaining energy and to enlarge their lifetime. Stationary applications as self-consumption or isolated systems support are examples of possible second life uses for these batteries. However, the modules that compose these batteries have very heterogeneous properties, and therefore condition their performance. This paper aims to characterize and analyze the existing capacity dispersion of Nissan Leaf modules that have reached the end of their lifetime on their original application and of new modules of this Electric Vehicle, in order to establish a comparison between them.Publication Open Access Modeling and optimal sizing of thyristor rectifiers for high-power hydrogen electrolyzers(IEEE, 2025-05-01) Iribarren Zabalegui, Ălvaro; Barrios RĂpodas, Ernesto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate PublikoaThyristor rectifiers are currently the most common solution for supplying high-power electrolyzers. These rectifiers typically include a dc inductance, which significantly increases system costs. However, this inductance can be avoided by relying solely on ac-side inductances, required for grid current harmonic filtering, although this approach introduces specific challenges. Traditional analytical models of thyristor rectifiers are unable to determine the electrolyzer operating point for a given firing angle and may lead to incorrect system sizing, ultimately preventing the converter from delivering nominal power. This limitation arises from the fact that existing models are formulated for inductive or constant-current loads, whereas electrolyzers exhibit electrical behavior closer to constant-voltage loads. In this paper, a novel analytical model of 6- and 12-pulse thyristor rectifiers with constant-voltage load is developed. The model enables the analysis and optimal sizing of thyristor rectifiers directly connected to electrolyzers without a dc-side inductance. Its accuracy has been validated through both simulations and experimentally using a laboratory-scale prototype. Furthermore, the model has been applied to optimally size a 12-pulse rectifier supplying a 5.5 MW electrolyzer, demonstrating its suitability for the design of thyristor rectifier systems in industrial-scale electrolysis applications and highlighting its advantages over traditional approaches.Publication Open Access Experimental assessment of first- and second-life electric vehicle batteries: performance, capacity dispersion, and aging(IEEE, 2021) Braco Sola, Elisa; San MartĂn Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaNowadays, the reuse of electric vehicle batteries is considered to be a feasible alternative to recycling, as it allows them to benefit from their remaining energy capacity and to enlarge their lifetime. Stationary applications, such as self-consumption or off-grid systems support, are examples of second-life (SL) uses for retired batteries. However, reused modules that compose these batteries have heterogeneous properties, which limit their performance. This article aims to assess the influence of degradation in modules from electric vehicles, covering three main aspects: performance, capacity dispersion, and extended SL behavior. First, a complete characterization of new and reused modules is carried out, considering three temperatures and three discharge rates. In the second stage, intra- and intermodule capacity dispersions are evaluated with new and reused samples. Finally, the behavior during SL is also analyzed, through an accelerated cycling test so that the evolution of capacity and dispersion are assessed. Experimental results show that the performance of reused modules is especially undermined at low temperatures and high current rates, as well as in advanced stages of aging. The intramodule dispersion is found to be similar in reused and new samples, while the intermodule differences are nearly four times greater in SL.Publication Open Access Impact of micro-cycles on the lifetime of lithium-ion batteries - EIS analysis(IEEE, 2024-07-30) NovĂĄkovĂĄ, Katerina; Berrueta Irigoyen, Alberto; Soto Cabria, AdriĂĄn; Sanchis GĂșrpide, Pablo; UrsĂșa Rubio, Alfredo; IngenierĂa ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaExperimental studies of lithium-ion batteries are very often based only on deep charge and discharge cycles. However, these test profiles do not fully reflect the actual operation of the battery in an electric vehicle or in stationary applications, where the battery is not only loaded during the main charging and discharging profiles, but it is also stressed by the current throughput caused by renewable power fluctuations or by auxiliary services. These cycles, which are superimposed to the main charge and discharge processes and have a depth of discharge not exceeding 2%, are called micro-cycles. Although there are several simulation studies that attempt to capture this issue, there is still no comprehensive experimental study that has the phenomena that occur during micro-cycling. This paper presents an experimental analysis of micro-cycles, providing a detailed view of the different processes taking place in the battery during aging, by means of a detailed analysis of the results from electrochemical impedance spectroscopy (EIS). By studying the single electrochemical processes in detail, this paper explains the benefits of micro-cycling in terms of extending the lifetime of the battery.