Date
Authors
Director
Publisher
item.page.impacto
Abstract
This paper proposes an energy management strategy for a residential microgrid comprising photovoltaic (PV) panels, a small wind turbine and solar thermal collectors. The microgrid can control the power exchanged with the grid thanks to a battery and a controllable electric water heater, which provide two degrees of freedom to the control strategy. As input data, the proposed control strategy uses the battery state of charge (SOC), the temperature of the hot water tank, the power of each microgrid element as well as the demand and renewable generation forecasts. By using forecasted data and by controlling the electric water heater, the strategy is able to achieve a better grid power profile while using a smaller battery than previous works, hence reducing the overall cost of the system. The strategy is tested by means of simulation with real data for one year and it is also experimentally validated in the microgrid built at the Renewable Energy Laboratory at the UPNA.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.