Pellejero, Ismael

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Pellejero

First Name

Ismael

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Understanding blood oxygenation in a microfluidic meander double side membrane contactor
    (Elsevier, 2019) Malankowska, Magdalena; Julián, Ignacio; Pellejero, Ismael; Rho, Hoon Suk; Schlautmann, Stefan; Tiggelaar, Roald M.; Pina, María del Pilar; Gardeniers, Han; Mallada, Reyes; Institute for Advanced Materials and Mathematics - INAMAT2
    Lung disease is one of the most important causes of high morbidity in preterm infants. In this work, we study a simple and easy to fabricate microfluidic device that demonstrates a great potential for blood oxygenation. A meander type architecture with double side vertical membrane arrangement has been selected as reference model to investigate the oxygenation process. The design criteria for the fabricated devices has been to maximize the oxygen saturation level while ensuring the physiological blood flow in order to avoid thrombus formation and channel blockage during operation. A mathematical model for the oxygen transfer has been developed and validated by the experimental study. The obtained results demonstrate that blood was successfully oxygenated up to approximately 98% of O-2 saturation and that the oxygen transfer rate at 1 mL/min blood flow rate was approximately 92 mL/minm(2). Finally, a sensitivity analysis of the key parameters, i.e. size of the channel, oxygen concentration in the gas phase and oxygen permeation properties of the membrane, is carried out to discuss the performance limits and to settle the guidelines for future developments.
  • PublicationOpen Access
    On the improvement of alveolar-like microfluidic devices for efficient blood oxygenation
    (Wiley, 2021) Malankowska, Magdalena; Pellejero, Ismael; Julián, Ignacio; Rho, Hoon Suk; Pinczowski, Pedro; Tiggelaar, Roald M.; Gardeniers, Han; Mallada, Reyes; Pina, María del Pilar; Institute for Advanced Materials and Mathematics - INAMAT2
    In this work, we study alveolar-like microfluidic devices with a horizontal membrane arrangement that demonstrate a great potential as small-scale blood oxygenator. The design criteria for the fabricated devices were to maximize the oxygen saturation level and minimize liquid chamber volume while ensuring the physiological blood flow in order to avoid thrombus formation and channel blockage during operation. The liquid chamber architecture was iteratively modified upon analysis of the fluid dynamics by computer modelling. Accordingly, two alveolar type architectures were fabricated, Alveolar Design 1 (AD1) and Alveolar Design 2 (AD2), and evaluated for oxygenation of sheep blood. The attained O2 transfer rate at 1 mL/min of blood flow rate for both devices was rather similar: 123 mL·min-1 ·m-2 and 127 mL·min-1 ·m-2 for AD1 and AD2 microfluidic devices, respectively. Among the studied, AD2 type geometry would lead to the lowest pressure drop and shear stress value upon implementation in a scaled microfluidic artificial lung (µAL) to satisfy oxygenation requirements of a 2.0 kg neonate.
  • PublicationOpen Access
    Highly sensitive SERS quantification of organophosphorous chemical warfare agents: a major step towards the real time sensing in the gas phase
    (Elsevier, 2018) Lafuente Adiego, Marta; Pellejero, Ismael; Sebastián, Víctor; Urbiztondo, Miguel A.; Mallada, Reyes; Institute for Advanced Materials and Mathematics - INAMAT2
    A surface-enhanced Raman scattering (SERS)-based sensor was developed for the label-free real-time gas phase detection of dimethyl methylphosphonate (DMMP); a surrogate molecule of the G-series nerve agents which are of particular concern due to its extreme toxicity, persistence and previous deployment. The SERS platform was designed using simple elements (Au nano-particles) coated with a citrate layer, and a self-assembly procedure that yields near- optimum distances among the nanoparticles. The citrate coating acts as an effective trap of the target molecules on the immediate vicinity of the Au nanoparticle surface under ambient conditions by reversible hydrogen bonding type interactions. For the first time, we have been able to detect sub-ppm concentrations of DMMP in gas phase (130 parts-per-billion), as might be found on potential emergency scenarios. The high sensitivity, simple preparation and reusability of the SERS platforms developed in this work open up the way for immediate detection of chemical warfare agents in realistic scenarios.
  • PublicationOpen Access
    In situ synthesis of SERS-active Au@POM nanostructures in a microfluidic device for real-time detection of water pollutants
    (American Chemical Society, 2020) Lafuente Adiego, Marta; Pellejero, Ismael; Clemente, Alberto; Urbiztondo, Miguel A.; Mallada, Reyes; Reinoso, Santiago; Pina, María del Pilar; Gandía Pascual, Luis; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    We present a simple, versatile and low-cost approach for the preparation of SERS-active regions within a microfluidic channel 50 cm in length. The approach involves the UV-light-driven formation of polyoxometalate-decorated gold nanostructures, Au@POM (POM: H3PW12O40 (PW) and H3PMo12O40 (PMo)), that self-assemble in situ on the surface of the PDMS microchannels without any extra functionalization procedure. The fabricated LoCs were characterized by SEM, UV-Vis, Raman, XRD and XPS techniques. The SERS activity of the resulting Au@POM–coated lab-on-a-chip (LoC) devices was evaluated in both static and flow conditions using Rhodamine R6G. The SERS response of Au@PW–based LoCs was found superior to Au@PMo counterparts and outstanding when compared to reported data on metal@POM nanocomposites. We demonstrate the potentialities of both Au@POM–coated LoCs as analytical platforms for real time detection of the organophosphorous pesticide Paraoxon-methyl at 10-6 M concentration level.