Publication:
Understanding blood oxygenation in a microfluidic meander double side membrane contactor

Date

2019

Authors

Malankowska, Magdalena
Julián, Ignacio
Rho, Hoon Suk
Schlautmann, Stefan
Tiggelaar, Roald M.
Pina, María del Pilar
Gardeniers, Han
Mallada, Reyes

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Métricas Alternativas

Abstract

Lung disease is one of the most important causes of high morbidity in preterm infants. In this work, we study a simple and easy to fabricate microfluidic device that demonstrates a great potential for blood oxygenation. A meander type architecture with double side vertical membrane arrangement has been selected as reference model to investigate the oxygenation process. The design criteria for the fabricated devices has been to maximize the oxygen saturation level while ensuring the physiological blood flow in order to avoid thrombus formation and channel blockage during operation. A mathematical model for the oxygen transfer has been developed and validated by the experimental study. The obtained results demonstrate that blood was successfully oxygenated up to approximately 98% of O-2 saturation and that the oxygen transfer rate at 1 mL/min blood flow rate was approximately 92 mL/minm(2). Finally, a sensitivity analysis of the key parameters, i.e. size of the channel, oxygen concentration in the gas phase and oxygen permeation properties of the membrane, is carried out to discuss the performance limits and to settle the guidelines for future developments.

Description

Keywords

Blood oxygenation, Microfluidic membrane contactor

Department

Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2019 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.