Miguel Turullols, Laura de
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Miguel Turullols
First Name
Laura de
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
30 results
Search Results
Now showing 1 - 10 of 30
Publication Embargo Non-symmetric over-time pooling using pseudo-grouping functions for convolutional neural networks(Elsevier, 2024-07-01) Ferrero Jaurrieta, Mikel; Paiva, Rui; Cruz, Anderson; Bedregal, Benjamin; Miguel Turullols, Laura de; Takáč, Zdenko; López Molina, Carlos; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISCConvolutional Neural Networks (CNNs) are a family of networks that have become state-of-the-art in several fields of artificial intelligence due to their ability to extract spatial features. In the context of natural language processing, they can be used to build text classification models based on textual features between words. These networks fuse local features to generate global features in their over-time pooling layers. These layers have been traditionally built using the maximum function or other symmetric functions such as the arithmetic mean. It is important to note that the order of input local features is significant (i.e. the symmetry is not an inherent characteristic of the model). While this characteristic is appropriate for image-oriented CNNs, where symmetry might make the network robust to image rigid transformations, it seems counter-productive for text processing, where the order of the words is certainly important. Our proposal is, hence, to use non-symmetric pooling operators to replace the maximum or average functions. Specifically, we propose to perform over-time pooling using pseudo-grouping functions, a family of non-symmetric aggregation operators that generalize the maximum function. We present a construction method for pseudo-grouping functions and apply different examples of this family to over-time pooling layers in text-oriented CNNs. Our proposal is tested on seven different models and six different datasets in the context of engineering applications, e.g. text classification. The results show an overall improvement of the models when using non-symmetric pseudo-grouping functions over the traditional pooling function.Publication Open Access Computing with uncertainty truth degrees: a convolution-based degrees(2017) Miguel Turullols, Laura de; Bustince Sola, Humberto; Baets, Bernard de; Induráin Eraso, Esteban; Automática y Computación; Automatika eta KonputazioaLa teoría de los conjuntos difusos puede contemplarse como un conjunto de herramientas matemáticas excepcionalmente adaptadas para trabajar con información incompleta, falta de nitidez e incertidumbre no aleatoria. De hecho, como herramienta en ingeniería, para traducir el lenguaje natural humano impreciso en un objeto matemático, los conjuntos difusos juegan un papel decisivo para superar la brecha entre el hombre y los ordenadores. Sin embargo, es ampliamente conocido que la asignación de un valor preciso como pertenencia no es una tarea sencilla. En la literatura, se han propuesto y estudiado varias generalizaciones de los conjuntos difusos para resolver esta dificultad. Más aún, estas generalizaciones han demostrado ser una herramienta útil, al mejorar los resultados en diferentes aplicaciones. Las generalizaciones difieren de los conjuntos difusos en el objeto matemático que se utiliza para modelar la imprecisión y/o incertidumbre. Especifícamente, los conjuntos difusos toman elementos en el intervalo unidad [0, 1] mientras que las generalizaciones toman objetos matemáticos más complejos como intervalos (conjuntos difusos intervalo-valorados), subconjuntos del intervalo unidad (conjuntos difusos "conjunto-valorados") o funciones (conjuntos difusos tipo-2), entre otros. No obstante, el uso de las generalizaciones de los conjuntos difusos tiene un gran inconveniente. Antes de aplicar las generalizaciones de los conjuntos difusos es necesario adaptar ad hoc cada noción teórica al correspondiente objeto matemático que modela la incertidumbre en la aplicación, es decir, es necesario redefinir cada noción teórica reemplazando el intervalo unidad [0, 1] por objetos matemáticos más complejos. En la historia de los conjuntos difusos quedó claro relativamente pronto que la relación natural entre la teoría de conjuntos y la lógica clásica podía ser imitada generando una relación entre la teoría de los conjuntos difusos y la lógica multi-valuada. Hoy en día esta lógica multivaluada recibe el nombre de lógica difusa. Del mismo modo, cada generalización de los conjuntos difusos genera un nuevo sistema lógico. Todos estos sistemas lógicos coinciden en que intentan modelar incertidumbre, pero difieren en el objeto matemático que representa esta incertidumbre. Es fácil comprobar que el mismo problema entre conjuntos difusos y sus generalizaciones puede encontrarse en los distintos sistemas lógicos, es decir, aunque todos ellos son similares, cada noción teórica tiene que ser redefinida para cada lógica. Este problema, junto con el gran número de lógicas que modelan incertidumbre, nos ha llevado a estudiar si es o no posible encontrar un sistema que englobe estas lógicas y nos ha motivado a proponer un sistema lógico que permita modelar la incertidumbre de manera más flexible. Centrándonos especialmente en sistemas lógicos provenientes de la lógica difusa, en esta tesis doctoral proponemos un nuevo sistema lógico que recupera varias de las lógicas de la literatura. La principales ventajas de nuestra propuesta son: evitará la excesiva repetición de las nociones teóricas; permitirá adaptar la aplicación a la generalización de los conjuntos difusos más adecuada de una manera mucho más sencilla. En esta tesis doctoral presentamos la semántica del modelo lógico propuesto junto con un estudio en profundidad de la operación de convolución que se utiliza para definir las conectivas disyunción y conjunción del sistema.Publication Open Access Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making(Elsevier, 2015) Miguel Turullols, Laura de; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Induráin Eraso, Esteban; Kolesárová, Anna; Mesiar, Radko; Matemáticas; Matematika; Automática y Computación; Automatika eta Konputazioa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we introduce a method for constructing linear orders between pairs of intervals by using aggregation functions. We adapt this method to the case of interval-valued Atanassov intuitionistic fuzzy sets and we apply these sets and the considered orders to a decision making problem.Publication Open Access On the notion of fuzzy dispersion measure and its application to triangular fuzzy numbers(Elsevier, 2023) Roldán López de Hierro, Antonio Francisco; Bustince Sola, Humberto; Rueda, María del Mar; Roldán, Concepción; Miguel Turullols, Laura de; Guerra Errea, Carlos; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaIn this paper, based on the analysis of the most widely used dispersion measure in the real context (namely, the variance), we introduce the notion of fuzzy dispersion measure associated to a finite set of data given by fuzzy numbers. This measure is implemented as a fuzzy number, so there is no loss of information caused by any defuzzification. The proposed concept satisfies the usual properties in a genuinely fuzzy sense and it avoids limitations in terms of its geometric shape or its analytical properties: under this conception, it could have a piece of its support in the negative part of the real line. This novel notion can be interpreted as a way of fusing the information included in a fuzzy data set in order to make a decision based on its dispersion. To illustrate the main characteristics of this approach, we present an example of a fuzzy dispersion measure that allows to conclude that this new way to deal this problem is coherent, at least, from the point of view of human intuition.Publication Open Access Pointwise aggregation of maps: its structural functional equation and some applications to social choice theory(Elsevier, 2017) Miguel Turullols, Laura de; Campión Arrastia, María Jesús; Candeal, Juan Carlos; Induráin Eraso, Esteban; Paternain Dallo, Daniel; Automática y Computación; Matemáticas; Automatika eta Konputazioa; Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe study a structural functional equation that is directly related to the pointwise aggregation of a finite number of maps from a given nonempty set into another. First we establish links between pointwise aggregation and invariance properties. Then, paying attention to the particular case of aggregation operators of a finite number of real-valued functions, we characterize several special kinds of aggregation operators as strictly monotone modifications of projections. As a case study, we introduce a first approach of type-2fuzzy sets via fusion operators. We develop some applications and possible uses related to the analysis of properties of social evaluation functionals in social choice, showing that those functionals can actually be described by using methods that derive from this setting.Publication Open Access Local properties of strengthened ordered directional and other forms of monotonicity(Springer, 2019) Sesma Sara, Mikel; Miguel Turullols, Laura de; Mesiar, Radko; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13In this study we discuss some of the recent generalized forms of monotonicity, introduced in the attempt of relaxing the monotonicity condition of aggregation functions. Specifically, we deal with weak, directional, ordered directional and strengthened ordered directional monotonicity. We present some of the most relevant properties of the functions that satisfy each of these monotonicity conditions and, using the concept of pointwise directional monotonicity, we carry out a local study of the discussed relaxations of monotonicity. This local study enables to highlight the differences between each notion of monotonicity. We illustrate such differences with an example of a restricted equivalence function.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Open Access Neuro-inspired edge feature fusion using Choquet integrals(Elsevier, 2021) Marco Detchart, Cedric; Lucca, Giancarlo; López Molina, Carlos; Miguel Turullols, Laura de; Pereira Dimuro, Graçaliz; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIt is known that the human visual system performs a hierarchical information process in which early vision cues (or primitives) are fused in the visual cortex to compose complex shapes and descriptors. While different aspects of the process have been extensively studied, such as lens adaptation or feature detection, some other aspects, such as feature fusion, have been mostly left aside. In this work, we elaborate on the fusion of early vision primitives using generalizations of the Choquet integral, and novel aggregation operators that have been extensively studied in recent years. We propose to use generalizations of the Choquet integral to sensibly fuse elementary edge cues, in an attempt to model the behaviour of neurons in the early visual cortex. Our proposal leads to a fully-framed edge detection algorithm whose performance is put to the test in state-of-the-art edge detection datasets.Publication Open Access A framework for radial data comparison and its application to fingerprint analysis(Elsevier, 2016) Marco Detchart, Cedric; Cerrón González, Juan; Miguel Turullols, Laura de; López Molina, Carlos; Bustince Sola, Humberto; Galar Idoate, Mikel; Automatika eta Konputazioa; Institute of Smart Cities - ISC; Automática y Computación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work tackles the comparison of radial data, and proposes comparison measures that are further applied to fingerprint analysis. First, we study the similarity of scalar and non-scalar radial data, elaborated on previous works in fuzzy set theory. This study leads to the concepts of restricted radial equivalence function and Radial Similarity Measure, which model the perceived similarity between scalar and vectorial pieces of radial data, respectively. Second, the utility of these functions is tested in the context of fingerprint analysis, and more specifically, in the singular point detection. With this aim, a novel Template-based Singular Point Detection method is proposed, which takes advantage of these functions. Finally, their suitability is tested in different fingerprint databases. Different Similarity Measures are considered to show the flexibility offered by these measures and the behaviour of the new method is compared with well-known singular point detection methods.Publication Open Access Strengthened ordered directional and other generalizations of monotonicity for aggregation functions(Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.
- «
- 1 (current)
- 2
- 3
- »