Matías Maestro, Ignacio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Matías Maestro

First Name

Ignacio

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Gas sensor based on lossy mode resonances by means of thin graphene oxide films fabricated onto planar coverslips
    (MDPI, 2023) Vitoria Pascual, Ignacio; Gallego Martínez, Elieser Ernesto; Melendi Espina, Sonia; Hernáez Sáenz de Zaitigui, Miguel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of planar waveguides has recently shown great success in the field of optical sensors based on the Lossy Mode Resonance (LMR) phenomenon. The properties of Graphene Oxide (GO) have been widely exploited in various sectors of science and technology, with promising results for gas sensing applications. This work combines both, the LMR-based sensing technology on planar waveguides and the use of a GO thin film as a sensitive coating, to monitor ethanol, water, and acetone. Experimental results on the fabrication and performance of the sensor are presented. The obtained results showed a sensitivity of 3.1, 2.0, and 0.6 pm/ppm for ethanol, water, and acetone respectively, with a linearity factor R2 > 0.95 in all cases.
  • PublicationOpen Access
    Photonic chip breath analyzer
    (SpringerOpen, 2025-06-03) Gallego Martínez, Elieser Ernesto; Matías Maestro, Ignacio; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work introduces a novel single-package optical sensing device for multiple gas sensing, which is suitable for breath analysis applications. It is fabricated on a coverslip substrate via a sputtering technique and uses a planar waveguide configuration with lateral incidence of light. It features three sequentially ordered strips of different materials, which serve to increase the multivariate nature of the response of the device to different gases. For the proof-of-concept, the selected materials are indium tin oxide (ITO), tin oxide (SnO2), and chromium oxide III (Cr2O3), while the selected gases are nitric oxide (NO), acetylene (C2H2), and ammonia (NH3). The sensing mechanism is based on the hyperbolic mode resonance (HMR) effect, with the first-order resonance obtained for each strip located in the near infrared region. The multivariate response of the resonances and the correlation with the concentration of each gas allow training a machine learning (ML) model based on a nonlinear autoregressive neural network, enabling the accurate prediction of the concentration of each gas. The obtained limit of detection for all the gases was in the order of a few parts per billion. This innovative approach coined as the multivariate optical resonances spectroscopy demonstrates the potential of HMR-based optical sensors in combination with ML techniques for ultra-sensitive multi-gas detection applications using a single device.
  • PublicationOpen Access
    Micro sized interdigital capacitor for gases detection based on graphene oxide coating
    (Springer, 2023) Vitoria Pascual, Ignacio; Armas, Dayron; Coronel Camones, Carlos Manuel; Algarra González, Manuel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Mukhopadhyay, Subhas C.; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC
    A micro sized interdigital capacitor sensible to CO2 and NO is studied in this work. The photolithography technique enables to obtain fingers with dimensions of 10 × 500 µm and separated 7 µm between them. The deposition of a film composed of graphene oxide particles as the dielectrics of the capacitor allows to measure the gas concentration of CO2 and NO mixed with N2. The sensors were characterized in a gas chamber with a constant flow, obtaining promising results in changes of capacitance at 100 Hz. The sensors have a good linearity and sensitivity with a R2 = 0.996 and 5.026·10-1 pF/ % v/v for CO2 and R2=0.972 and 1.433·10-1 pF/ppb for NO.
  • PublicationOpen Access
    LMR-based optical sensor for ethylene detection at visible and mid-infrared regions
    (IEEE, 2023) Gallego Martínez, Elieser Ernesto; Hualde Otamendi, Mikel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ethylene monitoring has long been a method of controlling the ripening of climacteric fruits, but it turns out that this gas is an important biomarker in biomedical applications. This work presents an optical gas sensor based on the lossy mode resonance (LMR) effect for ethylene detection in planar waveguide configuration. Two different approaches have been explored: one in the visible (VIS) spectral region and the second one in the mid infrared (MIR) region. Optical resonances have been achieved, in all cases, by means of sputtered tin oxide thin films. Response and recovery times were 54 and 246 s, respectively, for the sensor with the resonance in the VIS region, while the device operating in the MIR obtained response and recovery times of 19 and 47 s, respectively. The sensitivity during ethylene detection varied from 93.8 to 187.5 pm/ppm with the devices working in the VIS and MIR regions, respectively. According to the calibration curve, devices show an ethylene limit of detection (LOD) of 4.0058 and 0.6532 ppm in the VIS and MIR spectral regions, respectively, which finds applications in climacteric fruit ripening assessment as well as hemodialysis control. Cross sensitivity with humidity was also characterized for both devices.