Matías Maestro, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Matías Maestro
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
2 results
Search Results
Now showing 1 - 2 of 2
Publication Open Access Micro sized interdigital capacitor for gases detection based on graphene oxide coating(Springer, 2023) Vitoria Pascual, Ignacio; Armas, Dayron; Coronel Camones, Carlos Manuel; Algarra González, Manuel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Mukhopadhyay, Subhas C.; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISCA micro sized interdigital capacitor sensible to CO2 and NO is studied in this work. The photolithography technique enables to obtain fingers with dimensions of 10 × 500 µm and separated 7 µm between them. The deposition of a film composed of graphene oxide particles as the dielectrics of the capacitor allows to measure the gas concentration of CO2 and NO mixed with N2. The sensors were characterized in a gas chamber with a constant flow, obtaining promising results in changes of capacitance at 100 Hz. The sensors have a good linearity and sensitivity with a R2 = 0.996 and 5.026·10-1 pF/ % v/v for CO2 and R2=0.972 and 1.433·10-1 pF/ppb for NO.Publication Open Access Multi-sensing platform design with a grating-based nanostructure on a coverslip substrate(Springer, 2023) Imas González, José Javier; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Mukhopadhyay, Subhas C.; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTwo different thin film designs with a grating pattern are simulated on a soda lime coverslip, which acts as optical waveguide, with the purpose of generating both a lossy mode resonance (LMR) in transmission and reflection bands. This way both phenomena can be made sensitive to different parameters, leading to a multi-sensing device. The first design consists of a grating patterned in a SnO2 thin film deposited on the coverslip. The performance of the device in both transmission and reflection is numerically studied in air for different values of the grating pitch. Small grating pitches (in the order of the µm) are more suitable for generating the reflection bands while larger values (500 µm or more) are required to produce the LMR, when the reflection bands are no longer visible. Due to the inability to obtain both phenomena with this design, a second design is assessed, where the grating is combined with a section of constant thickness. In this case the desired response is obtained, which opens the path to use this device for multi-sensing applications, measuring several parameters at the same time.