Matías Maestro, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Matías Maestro
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
67 results
Search Results
Now showing 1 - 10 of 67
Publication Embargo Biosensing based on lossy mode resonances(Elsevier, 2024-01-01) Matías Maestro, Ignacio; Imas González, José Javier; Ruiz Zamarreño, Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISCLossy mode resonance (LMR)-based sensors have experienced an important development in the last decade. Among the different domains in which LMR-based sensors have been used, biosensing is one of the fields that has attracted more interest in recent years. Here, LMR properties and some biosensing concepts are reviewed in the first place. Then, the progress of LMR-based biosensors is described, starting with cladding-removed multimode fibers (CRMMF), and evolving towards the employment of D-shaped single mode fibers, which have led to better biosensors in terms of performance and limit of detection (LOD). More recent advances, such as the development of biosensors that combine the optical and electrochemical domains, or the introduction of planar waveguides as the biosensor substrate, are also discussed. In all the cases, examples of biosensors are included, indicating the detected biomarker, biofunctionalization protocol, dynamic range, LOD, and specificity assays. Finally, some conclusions about LMR-based biosensors are presented, as well as future perspectives and some ideas to advance in this field.Publication Open Access Highly sensitive sensor for measuring material thermal expansion using a ring laser(IEEE, 2023) Díaz Lucas, Silvia; Fuentes Lorenzo, Omar; Torres Betancourt, Angie Tatiana; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA new thermal expansion sensor is presented in this letter. It combines an interferometric fiber sensor and an erbium-doped fiber ring laser as the light source. The sensor consists of a combination of single-mode, hollow-core, and no-core mirror fibers. The sensor was tested on two different types of based metal, such as aluminum and steel, giving sensitivities as high as 38.7 and 5.75 nm/°C, respectively, showing good performance.Publication Open Access Fault detection of planetary gears based on signal space constellations(MDPI, 2022) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Molina Vicuña, Cristian; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA new method to process the vibration signal acquired by an accelerometer placed in a planetary gearbox housing is proposed, which is useful to detect potential faults. The method is based on the phenomenological model and consists of the projection of the healthy vibration signals onto an orthonormal basis. Low pass components representation and Gram–Schmidt’s method are conveniently used to obtain such a basis. Thus, the measured signals can be represented by a set of scalars that provide information on the gear state. If these scalars are within a predefined range, then the gear can be diagnosed as correct; in the opposite case, it will require further evaluation. The method is validated using measured vibration signals obtained from a laboratory test bench.Publication Open Access Electrochemical lossy mode resonance for the detection of manganese ions(Elsevier, 2023) Domínguez Rodríguez, Ismel; Corres Sanz, Jesús María; Del Villar, Ignacio; Mozo, Juan D.; Simerova, Radka; Sezemsky, Petr; Stranak, Vitezslav; Smietana, Mateusz; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work we propose electrochemical lossy mode resonance (eLMR) as a powerful method for the detection of manganese (Mn) ions. The sensor is based on a simple planar waveguide (sodasingle bondlime glass coverslip) coated with a thin layer of indium tin oxide (ITO) to obtain an optical resonance effect. Simultaneously, the ITO layer served as the working electrode in the cathodic stripping voltammetry (CSV) of Mn. The eLMR sensor is capable of simultaneously performing electrochemical (EC) and optical measurements, specifically lossy mode resonance (LMR), to monitor the growth of the adsorbed Mn layer on the ITO electrode and the electrochemically modulated diffusion layer. For Mn2+ ions, a limit of detection (LoD) of 1.26 ppb has been demonstrated using the EC method, whereas the optical method exhibited a LoD of 67.76 ppb. The results obtained indicate significant potential for application in molecular electrochemistry and studies focused on electrified interfaces.Publication Open Access Trends in the design of intensity-based optical fiber biosensors (2010–2020)(MDPI, 2021) Acha Morrás, Nerea de; Socorro Leránoz, Abián Bentor; Elosúa Aguado, César; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaThere exists an increasing interest in monitoring low concentrations of biochemical species, as they allow the early-stage detection of illnesses or the monitoring of the environment quality. Thus, both companies and research groups are focused on the development of accurate, fast and highly sensitive biosensors. Optical fiber sensors have been widely employed for these purposes because they provide several advantages for their use in point-of-care and real-time applications. In particular, this review is focused on optical fiber biosensors based on luminescence and absorption. Apart from the key parameters that determine the performance of a sensor (limit of detection, sensibility, cross-sensibility, etc.), other features are analyzed, such as the optical fiber dimensions, the sensing set ups and the fiber functionalization. The aim of this review is to have a comprehensive insight of the different aspects that must be taken into account when working with this kind of sensors.Publication Open Access Gas sensor based on lossy mode resonances by means of thin graphene oxide films fabricated onto planar coverslips(MDPI, 2023) Vitoria Pascual, Ignacio; Gallego Martínez, Elieser Ernesto; Melendi Espina, Sonia; Hernáez Sáenz de Zaitigui, Miguel; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe use of planar waveguides has recently shown great success in the field of optical sensors based on the Lossy Mode Resonance (LMR) phenomenon. The properties of Graphene Oxide (GO) have been widely exploited in various sectors of science and technology, with promising results for gas sensing applications. This work combines both, the LMR-based sensing technology on planar waveguides and the use of a GO thin film as a sensitive coating, to monitor ethanol, water, and acetone. Experimental results on the fabrication and performance of the sensor are presented. The obtained results showed a sensitivity of 3.1, 2.0, and 0.6 pm/ppm for ethanol, water, and acetone respectively, with a linearity factor R2 > 0.95 in all cases.Publication Open Access Multi-sensing platform design with a grating-based nanostructure on a coverslip substrate(Springer, 2023) Imas González, José Javier; Del Villar, Ignacio; Ruiz Zamarreño, Carlos; Mukhopadhyay, Subhas C.; Matías Maestro, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenTwo different thin film designs with a grating pattern are simulated on a soda lime coverslip, which acts as optical waveguide, with the purpose of generating both a lossy mode resonance (LMR) in transmission and reflection bands. This way both phenomena can be made sensitive to different parameters, leading to a multi-sensing device. The first design consists of a grating patterned in a SnO2 thin film deposited on the coverslip. The performance of the device in both transmission and reflection is numerically studied in air for different values of the grating pitch. Small grating pitches (in the order of the µm) are more suitable for generating the reflection bands while larger values (500 µm or more) are required to produce the LMR, when the reflection bands are no longer visible. Due to the inability to obtain both phenomena with this design, a second design is assessed, where the grating is combined with a section of constant thickness. In this case the desired response is obtained, which opens the path to use this device for multi-sensing applications, measuring several parameters at the same time.Publication Open Access Tunable sensitivity in long period fiber gratings during mode transition with low refractive index intermediate layer(IEEE, 2022) Del Villar, Ignacio; Montoya-Cardona, Jorge; Imas González, José Javier; Reyes-Vera, Erick; Ruiz Zamarreño, Carlos; Matías Maestro, Ignacio; Cruz, José Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenDouble-clad fibers where the second cladding has a lower refractive index than the first cladding, prove to be ideal structures for potentiating and tuning the sensitivity in long-period fiber gratings (LPFGs) operating in mode transition. When a thin film is deposited on the optical fiber, the second cladding performs acts as a barrier that initially prevents the transition to guidance in the thin film of one of the modes guided in the first cladding. Finally, the transition to guidance occurs with a sensitivity increase, in analogy to the tunnel effect observed in semiconductors. This improvement has been demonstrated both as a function of the thin film thickness and the surrounding medium refractive index, with enhancement factors of 4 and 2, respectively. This idea reinforces the performance of LPFGs, adding a new degree of freedom to the mode transition and the dispersion turning point phenomena. Moreover, the control of the variation of the effective index of cladding modes could be applied in other structures, such as tilted-fiber gratings or evanescent wave sensors.Publication Embargo Experimental study of sensing performance using hyperbolic mode resonances(Elsevier, 2025-01-01) Matías Maestro, Ignacio; Del Villar, Ignacio; Corres Sanz, Jesús María; González Salgueiro, Lázaro José; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSurface plasmon resonance (SPR) and lossy mode resonance (LMR) are prominent sensing mechanisms utilized across various fields. The Kretschmann configuration is commonly employed for SPR, while LMR is favored in planar waveguides or optical fibers due to high incidence angles. Recently, hyperbolic mode resonance (HMR) has emerged as a hybrid approach, combining metallic and dielectric thin films. This study explores the impact of incidence angle on HMR using the Kretschmann configuration. Four samples with varying gold (Au) and tin dioxide (SnO2) layer thicknesses were fabricated and characterized using Atomic Force Microscopy (AFM). Experimental setups employed the Kretschmann configuration for reflectance spectrum analysis. Results indicate enhanced sensitivity and figure of merit (FoM) with an additional SnO2 layer compared to the case without SnO2. Particularly with a 36 nm Au thickness the sensitivity doubles and the FoM improves by 16 %. Numerical simulations validate these findings, confirming the optimized performance of HMR for specific layer thicknesses and incidence angles.Publication Open Access Design and on-field validation of an embedded system for monitoring second-life electric vehicle lithium-ion batteries(MDPI, 2022) Castillo Martínez, Diego Hilario; Rodríguez Rodríguez, Adolfo Josué; Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Vargas Requena, Dávid Tomás; Matías Maestro, Ignacio; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Rodríguez Rodríguez, Wenceslao Eduardo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaIn the last few years, the growing demand for electric vehicles (EVs) in the transportation sector has contributed to the increased use of electric rechargeable batteries. At present, lithium-ion (Li-ion) batteries are the most commonly used in electric vehicles. Although once their storage capacity has dropped to below 80¿70% it is no longer possible to use these batteries in EVs, it is feasible to use them in second-life applications as stationary energy storage systems. The purpose of this study is to present an embedded system that allows a Nissan® LEAF Li-ion battery to communicate with an Ingecon® Sun Storage 1Play inverter, for control and monitoring purposes. The prototype was developed using an Arduino® microcontroller and a graphical user interface (GUI) on LabVIEW®. The experimental tests have allowed us to determine the feasibility of using Li-ion battery packs (BPs) coming from the automotive sector with an inverter with no need for a prior disassembly and rebuilding process. Furthermore, this research presents a programming and hardware methodology for the development of the embedded systems focused on second-life electric vehicle Li-ion batteries. One second-life battery pack coming from a Nissan® Leaf and aged under real driving conditions was integrated into a residential microgrid serving as an energy storage system (ESS).