Villadangos Alonso, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Villadangos Alonso
First Name
Jesús
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
38 results
Search Results
Now showing 1 - 10 of 38
Publication Open Access IVAN: Intelligent van for the distribution of pharmaceutical drugs(MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaThis paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.Publication Open Access An IoT framework for SDN based city mobility(Springer, 2021) Al-Rahamneh, Anas; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Klaina, Hicham; Picallo Guembe, Imanol; López Iturri, Peio; Falcone Lanas, Francisco; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe Internet of Things (IoT) is becoming more widespread, with global application in a wide range of commercial sectors, utilizing a variety of technologies for customized use in specific environments. The combinationof applications and protocolsand the unique requirements of each environment present a significant challenge for IoT applications, necessitating communication and message exchange support. This paper presents a proposed SDN-based edge smart bypass/ multiprotocol switching for bicycle networks that supports functionalities of coordination of various wireless transmission protocols. A performance assessment will be presented, addressing a comparison between the different protocols (LoRaWAN vs. Sigfox) in terms radio coverage.Publication Open Access Enabling anything to anything connectivity within urban environments towards cognitive frameworks(IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISCThe evolution from Smart Cities towards Cognitive Cities is enabled, among others, by the use of flexible and adaptive communication systems, capable of providing high levels of interactivity among multiple systems and users. In this work, wireless connectivity in full volumetric scale is analyzed, in order to provide wireless links between any device/user within the scenario, spanning to different applications from vehicular connectivity at different levels or infrastructure related communications, among others.Publication Open Access VTOL UAV digital twin for take-off, hovering and landing in different wind conditions(Elsevier, 2023) Aláez Gómez, Daniel; Olaz Moratinos, Xabier; Prieto Míguez, Manuel; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaWith UAVs becoming increasingly popular in the industry, vertical take-off and landing (VTOL) convertiplanes are emerging as a compromise between the advantages of planes and multicopters. Due to their large wing surface area, VTOL convertiplanes are subject to a strong wind dependence on critical phases such as take-off, landing, and hovering. Developing a new and improved unmanned aerial vehicle (UAV) is often expensive and associated with failures and accidents. This paper proposes the dynamic characterization of a commercial VTOL convertiplane UAV in copter mode and provides a novel method to estimate the aerodynamic forces and moments for any possible wind speed and direction. Starting from Euler’s equations of rigid body dynamics, we have derived the mathematical formulation to precisely consider aerodynamic forces and moments caused by any wind speed and direction. This unique approach will allow for VTOL convertiplane UAVs to be trained and tested digitally in takeoff, hovering, and landing maneuvers without the cost and hassle of physical testing, and the dependence on existing wind conditions. A digital twin of a VTOL convertiplane UAV in copter mode has been modeled and tested in the Gazebo robotics simulator. Take-off, hovering and landing maneuvers have been compared with and without the wind physics model. Finally, the simulator has been tested against real flight conditions (reproducing the mean wind speed and direction only), showing a natural and realistic behavior.Publication Open Access On constructing efficient UAV aerodynamic surrogate models for digital twins(IEEE, 2024-07-31) Aláez Gómez, Daniel; Prieto Míguez, Manuel; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaAerodynamic modeling and optimization for unmanned aerial vehicles (UAVs) are complex and computationally intensive tasks. Surrogate models have emerged as a powerful tool for increasing efficiency in the aircraft design and optimization process. We review and evaluate some modeling techniques, such as artificial neural networks and support vector regression, showing that Gaussian process regression generally provides a well-performing solution to this type of problem. We propose an active learning algorithm based on the relevance factor, that combines bias estimated from nearest-neighbor Euclidean distance and variance, to achieve higher accuracy with fewer compuational fluid dynamics (CFD) simulations. The obtained performance is evaluated using four 2-D test functions and an experimental CFD case, indicating that the proposed active learning approach outperforms classical random sampling techniques. Thanks to this architecture, the development process of a new commercial UAV can be significantly streamlined by expediting the testing phase through the use of DTs modeled more efficiently.Publication Open Access Adjusting fuzzy automata for string similarity measuring(EUSFLAT, 2001) Astrain Escola, José Javier; Villadangos Alonso, Jesús; González de Mendívil Moreno, José Ramón; Garitagoitia Padrones, José Ramón; Fariña Figueredo, Federico; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza; Automática y Computación; Automatika eta KonputazioaIn this paper, we introduce a fuzzy automaton for computing the similarity between pairs of strings and a genetic method for adjusting its parameters. The fuzzy automaton models the edit operations needed to transform any string into another one. The selection of appropriate fuzzy operations and fuzzy membership values for the transitions leads to improve the system performance for a particular application.Publication Open Access Integration of autonomous wireless sensor networks in academic school gardens(MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.Publication Open Access An easy to deploy street light control system based on wireless communication and LED technology(MDPI, 2013) Elejoste Larrucea, Pilar; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Chertudi Ozamiz, Aitor; García Zuazola, Ignacio Julio; Moreno, Asier; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaThis paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding’s environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.Publication Open Access Smart charging station with photovoltaic and energy storage for supplying electric buses(IEEE, 2022) Berrueta Irigoyen, Alberto; Astrain Escola, José Javier; Puy Pérez de Laborda, Guillermo; El Hamzaoui, Ismail; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; López Martín, Antonio; Matías Maestro, Ignacio; Institute of Smart Cities - ISCA Smart Charging Station (SCS) has been installed in the Public University of Navarre, Spain, in the framework of the H2020 Smart City Lighthouse STARDUST project. The SCS consists of a high-power electric bus charging point (300 kW), a 100 kW photovoltaic system, a 84 kWh support energy storage system based on a second-life lithiumion battery, and a monitoring and control system that allows the safe storage and convenient access to operation data. This SCS operates as a Smart Grid, being able to provide the power peaks required by the electric bus charger, reducing and smoothing the power demanded from the distribution grid and increasing the renewable energy self-consumption rate. This contribution presents a novel monitoring and control system, which is a key tool to integrate this SCS in the data infrastructure of a Smart City, as well as an energy management system able to operate the SCS to achieve the above-mentioned technical requirements. The crucial role of the monitoring and control system and the energy management system becomes evident in this work.Publication Open Access Implementation and analysis of a wireless sensor network-based pet location monitoring system for domestic scenarios(MDPI, 2016) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Santesteban Martínez de Morentin, Daniel; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica y ElectrónicaThe flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.