Villadangos Alonso, Jesús

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Villadangos Alonso

First Name

Jesús

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 46
  • PublicationOpen Access
    Arquitectura de publicación automatizada de contenidos educativos supervisados en Internet
    (1999) Arin Irastorza, María Asunción; Magaña Lizarrondo, Eduardo; Astrain Escola, José Javier; Villadangos Alonso, Jesús; González de Mendívil Moreno, José Ramón; Automática y Computación; Automatika eta Konputazioa
    This paper presents an automated publishing architecture of educational and supervised contents over the Internet. The system makes easier the job of publishing educational courses over the network using specific tools that automates the access control (CGI -- Common Gateway Interface), encrypts the information that goes through the net for not being accessed by strangers (SSL – Secure Sockets Layer), gives an statistical control of the usage of the system, and tutors the course. This project is multiplatform, i.e. all the components that integrate the system are available for any operating system (Windows 9X, Solaris, Linux,...) and it is based on the Web.
  • PublicationOpen Access
    An ontology-based system to avoid UAS flight conflicts and collisions in dense traffic scenarios
    (Elsevier, 2023) Martín Lammerding, David; Astrain Escola, José Javier; Córdoba Izaguirre, Alberto; Villadangos Alonso, Jesús; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    New Unmanned Aerial Systems (UAS) applications will increase air traffic densities in metropolitan regions. Collision avoidance systems (CAS) are a key component in integrating a high number of UAS into the airspace in a safe way. This paper presents a distributed, autonomous, and knowledge-based CAS, called Dronetology System (DroS), for UASs. The CAS proposed here is managed using a novel ontology, called Dronetology-cas, which allows to make autonomous decisions according to the knowledge inferred from the data gathered by the UAS. DroS is deployed as part of the payload of the UAS. So, it is designed to run in an embedded platform with limited processing capacity and low battery consumption. DroS collects data from sensors and collaborative elements to make smart decisions using knowledge obtained from collaborative UASs, adapting the maneuvers of the aerial vehicles to their original flight plans, their kind of vehicle, and the collision scenario. DroS accountability involves recording its internal operation to assist with reconstructing the circumstances surrounding an autonomous maneuver or the details previous to a collision. DroS has been verified using the hardware in the loop (HIL) technique with a UAS traffic environment simulator. Results obtained show a significant improvement in terms of safety by avoiding collisions.
  • PublicationOpen Access
    IVAN: Intelligent van for the distribution of pharmaceutical drugs
    (MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza
    This paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.
  • PublicationOpen Access
    Spatial characterization of radio propagation channel in urban vehicle-to-infrastructure environments to support WSNs deployment
    (MDPI, 2017) Granda, Fausto; Azpilicueta Fernández de las Heras, Leyre; Vargas Rosales, César; López Iturri, Peio; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática
    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.
  • PublicationOpen Access
    An interdisciplinary design of an interactive cultural heritage visit for in-situ, mixed reality and affective experiences
    (MDPI, 2022) Olaz Moratinos, Xabier; García Marreros, Ricardo M.; Ortiz Nicolás, Amalia; Marichalar Baraibar, Sebastian Roberto; Villadangos Alonso, Jesús; Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako Gobernua
    Interactive technologies, such as mixed-reality and natural interactions with avatars, can enhance cultural heritage and the experience of visiting a museum. In this paper, we present the design rationale of an interactive experience for a cultural heritage place in the church of Roncesvalles at the beginning of Camino de Santiago. We followed a participatory design with a multidisciplinary team which resulted in the design of a spatial augmented reality system that employs 3D projection mapping and a conversational agent acting as the storyteller. Multiple features were identified as desirable for an interactive experience: interdisciplinary design team; in-situ; mixed reality; interactive digital storytelling; avatar; tangible objects; gestures; emotions and groups. The findings from a workshop are presented for guiding other interactive cultural heritage experiences. © 2022 by the authors.
  • PublicationOpen Access
    An easy to deploy street light control system based on wireless communication and LED technology
    (MDPI, 2013) Elejoste Larrucea, Pilar; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Chertudi Ozamiz, Aitor; García Zuazola, Ignacio Julio; Moreno, Asier; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika Ingeniaritza
    This paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding’s environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.
  • PublicationOpen Access
    Smart charging station with photovoltaic and energy storage for supplying electric buses
    (IEEE, 2022) Berrueta Irigoyen, Alberto; Astrain Escola, José Javier; Puy Pérez de Laborda, Guillermo; El Hamzaoui, Ismail; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; López Martín, Antonio; Matías Maestro, Ignacio; Institute of Smart Cities - ISC
    A Smart Charging Station (SCS) has been installed in the Public University of Navarre, Spain, in the framework of the H2020 Smart City Lighthouse STARDUST project. The SCS consists of a high-power electric bus charging point (300 kW), a 100 kW photovoltaic system, a 84 kWh support energy storage system based on a second-life lithiumion battery, and a monitoring and control system that allows the safe storage and convenient access to operation data. This SCS operates as a Smart Grid, being able to provide the power peaks required by the electric bus charger, reducing and smoothing the power demanded from the distribution grid and increasing the renewable energy self-consumption rate. This contribution presents a novel monitoring and control system, which is a key tool to integrate this SCS in the data infrastructure of a Smart City, as well as an energy management system able to operate the SCS to achieve the above-mentioned technical requirements. The crucial role of the monitoring and control system and the energy management system becomes evident in this work.
  • PublicationOpen Access
    Integration of autonomous wireless sensor networks in academic school gardens
    (MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.
  • PublicationOpen Access
    Técnicas eficientes de filtrado y análisis de tráfico para la monitorización continua de redes de comunicaciones
    (1999) Ruiz, José Javier; Magaña Lizarrondo, Eduardo; Aracil Rico, Javier; Villadangos Alonso, Jesús; Automática y Computación; Automatika eta Konputazioa
    This paper presents an efficient traffic filtering and analysis architecture for network monitoring. Opposed to the usual network monitoring architectures that provide simultaneous filters as requested by managers (packet filters), we propose a different approach that aims at minimizing CPU load by avoiding unnecessary filter duplicates. Such architecture makes it possible to optimize several parallel filters execution and thus is suitable for continuous network monitoring in which it is necessary to keep track of hundreds of filters. This architecture has been implemented in a network-monitoring tool called PROMIS whose main features are detailed in this paper.
  • PublicationOpen Access
    Enabling anything to anything connectivity within urban environments towards cognitive frameworks
    (IEEE, 2024-08-23) Picallo Guembe, Imanol; Klaina, Hicham; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Celaya Echarri, Mikel; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ciencias; Zientziak; Institute of Smart Cities - ISC
    The evolution from Smart Cities towards Cognitive Cities is enabled, among others, by the use of flexible and adaptive communication systems, capable of providing high levels of interactivity among multiple systems and users. In this work, wireless connectivity in full volumetric scale is analyzed, in order to provide wireless links between any device/user within the scenario, spanning to different applications from vehicular connectivity at different levels or infrastructure related communications, among others.