Villadangos Alonso, Jesús
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Villadangos Alonso
First Name
Jesús
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
46 results
Search Results
Now showing 1 - 10 of 46
Publication Open Access On constructing efficient UAV aerodynamic surrogate models for digital twins(IEEE, 2024-07-31) Aláez Gómez, Daniel; Prieto Míguez, Manuel; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Gobierno de Navarra / Nafarroako GobernuaAerodynamic modeling and optimization for unmanned aerial vehicles (UAVs) are complex and computationally intensive tasks. Surrogate models have emerged as a powerful tool for increasing efficiency in the aircraft design and optimization process. We review and evaluate some modeling techniques, such as artificial neural networks and support vector regression, showing that Gaussian process regression generally provides a well-performing solution to this type of problem. We propose an active learning algorithm based on the relevance factor, that combines bias estimated from nearest-neighbor Euclidean distance and variance, to achieve higher accuracy with fewer compuational fluid dynamics (CFD) simulations. The obtained performance is evaluated using four 2-D test functions and an experimental CFD case, indicating that the proposed active learning approach outperforms classical random sampling techniques. Thanks to this architecture, the development process of a new commercial UAV can be significantly streamlined by expediting the testing phase through the use of DTs modeled more efficiently.Publication Open Access IVAN: Intelligent van for the distribution of pharmaceutical drugs(MDPI, 2012) Moreno, Asier; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Landaluce, Hugo; García Zuazola, Ignacio Julio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaThis paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.Publication Open Access Distributed opportunistic wireless mapping system towards smart city service provision(IEEE, 2021) Villadangos Alonso, Jesús; Falcone Lanas, Francisco; López Martín, Antonio; Astrain Escola, José Javier; Sanchis Gúrpide, Pablo; Matías Maestro, Ignacio; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe knowledge of wireless signal distribution within an urban scenario can provide useful information to users as well as to enhance connectivity and device operation or to perform municipal logistics based on crowd density and user mobility patterns. In this work, a distributed wireless mapping system, based on a combination of opportunistic nodes such as smartphones which map geolocated WiFi access point connection and received power levels, and a cloud-based information gathering architecture is described. The proposed system has been tested in the framework of the Smart City platform of the city of Pamplona, providing signal distribution heat maps, which can be used for multiple municipal services.Publication Open Access Digital twin modelling of open category UAV radio communications: a case study(Elsevier, 2024) Aláez Gómez, Daniel; López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe modeling of radio links plays a crucial role in achieving mission success of unmanned aerial vehicles (UAVs). By simulating and analyzing communication performance, operators can anticipate and address potential challenges. In this paper, we propose a full-featured UAV software-in-the-loop digital twin (SITL-DT) for a heavy-lifting hexacopter that integrates a radio link module based on an experimental path loss model for ‘Open’ category Visual Line of Sight (VLOS) conditions and drone-antenna radiation diagrams obtained via electromagnetic simulation. The main purpose of integrating and simulating a radio link is to characterize when the communication link can be conflicting due to distance, the attitude of the aircraft relative to the pilot, and other phenomena. The system architecture, including the communications module, is implemented and validated based upon experimental flight data.Publication Open Access UAVradio: Radio link path loss estimation for UAVs(Elsevier, 2024) Aláez Gómez, Daniel; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Villadangos Alonso, Jesús; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe UAVRadio Python module is a comprehensive toolkit designed to facilitate the analysis and prediction of radio signal path loss in Unmanned Aerial Vehicle (UAV) communication scenarios. The module encompasses a range of path loss models referenced from established literature, offering users a powerful and flexible framework for estimating signal attenuation in different UAV communication links. It is a versatile and modular tool that enables simple integration for optimizing UAV communication systems and ensuring reliable wireless connectivity in a variety of operational scenarios. The utility of this package is demonstrated through two relevant examples: an experimentally fit model comparison with other implemented models, and a UAV digital twin implementation example comparing different available models and frequencies. The examples are provided in the code repository along with comprehensive documentation.Publication Open Access Integration of autonomous wireless sensor networks in academic school gardens(MDPI, 2018) López Iturri, Peio; Celaya Echarri, Mikel; Azpilicueta Fernández de las Heras, Leyre; Aguirre Gallego, Erik; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, the combination of capabilities provided by Wireless Sensor Networks (WSN) with parameter observation in a school garden is employed in order to provide an environment for school garden integration as a complementary educational activity in primary schools. Wireless transceivers with energy harvesting capabilities are employed in order to provide autonomous system operation, combined with an ad-hoc implemented application called MySchoolGardenApp, based on a modular software architecture. The system enables direct parameter observation, data analysis and processing capabilities, which can be employed by students in a cloud based platform. Providing remote data access allows the adaptation of content to specific classroom/homework needs. The proposed monitoring WSN has been deployed in an orchard located in the schoolyard of a primary school, which has been built with EnOcean's energy harvesting modules, providing an optimized node device as well network layout. For the assessment of the wireless link quality and the deployment of the modules, especially the central module which needs to receive directly the signals of all the sensor modules, simulation results obtained by an in-house developed 3D Ray Launching deterministic method have been used, providing coverage/capacity estimations applicable to the specific school environment case. Preliminary trials with MySchoolGardenApp have been performed, showing the feasibility of the proposed platform as an educational resource in schools, with application in specific natural science course content, development of technological skills and the extension of monitoring capabilities to new context-aware applications.Publication Open Access Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization(MDPI, 2015) Aguirre Gallego, Erik; López Iturri, Peio; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; Ingeniería Eléctrica y Electrónica; Ingeniería Matemática e Informática; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika eta Informatika IngeniaritzaOne of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.Publication Open Access Traffic estimation in high-speed communication networks using fuzzy systems(EUSFLAT, 2001) Magaña Lizarrondo, Eduardo; Villadangos Alonso, Jesús; Astrain Escola, José Javier; Automática y Computación; Automatika eta KonputazioaWe present a practical application of fuzzy systems in communication networks. In this case a fuzzy relational model is developed to estimate the bytes transferred every time unit over a communication link. Such estimation is useful to provide an algorithm to dynamically reserve resources in order to guaranty the quality of service of the communications. In order to evaluate the fuzzy estimator we apply the information about the whole IP packets received at the router of the Public University of Navarra along two months. The estimator predicts the load of the communication link 1, 2, 4 and 6 hours before. The results show that the estimator can be used to dynamically assign bandwidth for communication services.Publication Open Access Smart charging station with photovoltaic and energy storage for supplying electric buses(IEEE, 2022) Berrueta Irigoyen, Alberto; Astrain Escola, José Javier; Puy Pérez de Laborda, Guillermo; El Hamzaoui, Ismail; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Villadangos Alonso, Jesús; Falcone Lanas, Francisco; López Martín, Antonio; Matías Maestro, Ignacio; Institute of Smart Cities - ISCA Smart Charging Station (SCS) has been installed in the Public University of Navarre, Spain, in the framework of the H2020 Smart City Lighthouse STARDUST project. The SCS consists of a high-power electric bus charging point (300 kW), a 100 kW photovoltaic system, a 84 kWh support energy storage system based on a second-life lithiumion battery, and a monitoring and control system that allows the safe storage and convenient access to operation data. This SCS operates as a Smart Grid, being able to provide the power peaks required by the electric bus charger, reducing and smoothing the power demanded from the distribution grid and increasing the renewable energy self-consumption rate. This contribution presents a novel monitoring and control system, which is a key tool to integrate this SCS in the data infrastructure of a Smart City, as well as an energy management system able to operate the SCS to achieve the above-mentioned technical requirements. The crucial role of the monitoring and control system and the energy management system becomes evident in this work.Publication Open Access An easy to deploy street light control system based on wireless communication and LED technology(MDPI, 2013) Elejoste Larrucea, Pilar; Angulo Martínez, Ignacio; Perallos Ruiz, Asier; Chertudi Ozamiz, Aitor; García Zuazola, Ignacio Julio; Moreno, Asier; Azpilicueta Fernández de las Heras, Leyre; Astrain Escola, José Javier; Falcone Lanas, Francisco; Villadangos Alonso, Jesús; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Matemática e Informática; Matematika eta Informatika IngeniaritzaThis paper presents an intelligent streetlight management system based on LED lamps, designed to facilitate its deployment in existing facilities. The proposed approach, which is based on wireless communication technologies, will minimize the cost of investment of traditional wired systems, which always need civil engineering for burying of cable underground and consequently are more expensive than if the connection of the different nodes is made over the air. The deployed solution will be aware of their surrounding’s environmental conditions, a fact that will be approached for the system intelligence in order to learn, and later, apply dynamic rules. The knowledge of real time illumination needs, in terms of instant use of the street in which it is installed, will also feed our system, with the objective of providing tangible solutions to reduce energy consumption according to the contextual needs, an exact calculation of energy consumption and reliable mechanisms for preventive maintenance of facilities.