Ochoa Lezaun, Gustavo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ochoa Lezaun
First Name
Gustavo
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
6 results
Search Results
Now showing 1 - 6 of 6
Publication Open Access Orness for real m-dimensional interval-valued OWA operators and its application to determine a good partition(Taylor & Francis, 2019) Miguel Turullols, Laura de; Paternain Dallo, Daniel; Lizasoain Iriso, María Inmaculada; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1Ordered Weighted Averaging (OWA) operators are a profusely applied class of averaging aggregation functions, i.e. operators that always yield a value between the minimum and the maximum of the inputs. The orness measure was introduced to classify the behavior of the OWA operators depending on the weight vectors. Defining a suitable orness measure is an arduous task when we deal with OWA operators defined over more intricate spaces, such us intervals or lattices. In this work we propose a suitable definition for the orness measure to classify OWA operators defined on the set of m-dimensional intervals taking real values in [0, 1]. The orness measure is applied to decide which is the best partition of a continuous range that should be divided into four linguistic labels. This example shows the good behavior of the proposed orness measure.Publication Open Access Orness measurements for lattice m-dimensional interval-valued OWA operators(Elsevier, 2018) Miguel Turullols, Laura de; Paternain Dallo, Daniel; Lizasoain Iriso, María Inmaculada; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Estadística, Informática y MatemáticasOrdered weighted average (OWA) operators are commonly used to aggregate information in multiple situations, such as decision making problems or image processing tasks. The great variety of weights that can be chosen to determinate an OWA operator provides a broad family of aggegating functions, which obviously give diferent results in the aggregation of the same set of data. In this paper, some possible classifications of OWA operators are suggested when they are de ned on m-dimensional intervals taking values on a complete lattice satisfying certain local conditions. A first classification is obtained by means of a quantitative orness measure that gives the proximity of each OWA to the OR operator. In the case in which the lattice is finite, another classification is obtained by means of a qualitative orness measure. In the present paper, several theoretical results are obtained in order to perform this qualitative value for each OWA operator.Publication Open Access The interval-valued Choquet integral based on admissible permutations(IEEE, 2018) Paternain Dallo, Daniel; Miguel Turullols, Laura de; Ochoa Lezaun, Gustavo; Lizasoain Iriso, María Inmaculada; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaAggregation or fusion of interval data is not a trivial task, since the necessity of arranging data arises in many aggregation functions, such as OWA operators or the Choquet integral. Some arranging procedures have been given to solve this problem, but they need certain parameters to be set. In order to solve this problem, in this work we propose the concept of an admissible permutation of intervals. Based on this concept, which avoids any parameter selection, we propose a new approach for the interval-valued Choquet integral that takes into account every possible permutation fitting to the considered ordinal structure of data. Finally, a consensus among all the permutations is constructed.Publication Open Access Measures of embedding for interval-valued fuzzy sets(Elsevier, 2023) Bouchet, Agustina; Sesma Sara, Mikel; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Montes Rodríguez, Susana; Díaz, Irene; Estadística, Informática y Matemáticas; Estatistika, Informatika eta MatematikaInterval-valued fuzzy sets are a generalization of classical fuzzy sets where the membership values are intervals. The epistemic interpretation of interval-valued fuzzy sets assumes that there is one real-valued membership degree of an element within the membership interval of possible membership degrees. Considering this epistemic interpretation, we propose a new measure, called IV-embedding, to compare the precision of two interval-valued fuzzy sets. An axiomatic definition for this concept as well as a construction method are provided. The construction method is based on aggregation operators and the concept of interval embedding, which is also introduced and deeply studied.Publication Open Access Interval-valued Atanassov intuitionistic OWA aggregations using admissible linear orders and their application to decision making(IEEE, 2016) Miguel Turullols, Laura de; Bustince Sola, Humberto; Pekala, Barbara; Bentkowska, Urszula; Silva, Ivanoska da; Bedregal, Benjamin; Mesiar, Radko; Ochoa Lezaun, Gustavo; Automatika eta Konputazioa; Matematika; Institute of Smart Cities - ISC; Automática y Computación; MatemáticasBased on the definition of admissible order for interval-valued Atanassov intuitionistic fuzzy sets, we study OWA operators in these sets distinguishing between the weights associated to the membership and those associated to the nonmembership degree which may differ from the latter. We also study Choquet integrals for aggregating information which is represented using interval-valued Atanassov intuitionistic fuzzy sets. We conclude with two algorithms to choose the best alternative in a decision making problem when we use this kind of sets to represent information.Publication Embargo Some characterizations of lattice OWA operators(World Scientific Publishing Company, 2017) Miguel Turullols, Laura de; Paternain Dallo, Daniel; Lizasoain Iriso, María Inmaculada; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Matemáticas; MatematikaOrdered Weighted Averaging (OWA) operators are a family of aggregation which fusion data. If the data are real numbers, then OWA operators can be characterized either as an special kind of Choquet integral or simply as an arithmetic mean of the given values previously ordered. This paper analyzes the possible generalizations of these characterizations when OWA operators are de ned on a complete lattice. In addition, the set of all n -ary OWA operators is studied as a sublattice of the lattice of all the n -ary aggregation functions de ned on a distributive lattice.