Person:
Rubia Galiano, María Isabel

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Rubia Galiano

First Name

María Isabel

person.page.departamento

Ciencias

person.page.instituteName

IMAB. Research Institute for Multidisciplinary Applied Biology

ORCID

0000-0002-8034-510X

person.page.upna

811088

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Integrative approaches for the analysis of abiotic stress responses in the legume-Rhizobium symbiosis: from shoots to roots
    (2020) Rubia Galiano, María Isabel; Arrese-Igor Sánchez, César; Larrainzar Rodríguez, Estíbaliz; Ciencias; Zientziak
    La actual población mundial junto con las predicciones de un mayor crecimiento sugieren que es necesario incrementar el rendimiento de los cultivos a nivel mundial. Las leguminosas son el segundo cultivo más importante para alimentación después de los cereales, y gracias a su capacidad de establecer una relación simbiótica con bacterias del suelo, se reduce el impacto del uso de fertilizantes nitrogenados sobre el medio ambiente. Esta simbiosis da lugar al proceso conocido como fijación biológica de nitrógeno (FBN), que consiste en la reducción de nitrógeno molecular a amonio, a partir del cual, las plantas sintetizan compuestos orgánicos nitrogenados esenciales para su nutrición. Desafortunadamente, la FBN es un proceso muy sensible a estreses bióticos y abióticos tales como salinidad, sequía o limitación de nutrientes, entre otros. El objetivo general de este trabajo es ampliar los conocimientos sobre la regulación de la FBN y los mecanismos fisiológicos y bioquímicos que activan las plantas en respuesta a estreses abióticos. Para contrarrestar los efectos negativos de estreses osmóticos, las plantas y las bacterias son capaces de sintetizar compuestos osmoprotectores para mantener la viabilidad de las células, por ejemplo, el aminoácido prolina. El primer paso clave para entender las múltiples funciones de esta molécula bajo situaciones de estrés osmótico es una monitorización del uso de prolina a tiempo real. En el capítulo uno nuestros resultados mostraron que, en bacteroides, la acumulación de prolina no ocurre durante la fase de estrés, si no durante la recuperación, una vez las condiciones óptimas para el crecimiento de la planta se han reestablecido. En el capítulo dos, se llevó a cabo un estudio proteómico y metabólico dirigido para ampliar el conocimiento sobre el metabolismo de aminoácidos en nódulos de guisante. En el modelo clásico de intercambio de nutrientes entre simbiontes, la planta suministra energía en forma de dicarboxilatos a los bacteroides fijadores de nitrógeno a cambio de amonio. Sin embargo, este modelo clásico fue cuestionado por la observación de que las mutaciones en los transportadores de aminoácidos ABC, AapJQMP and BraDEFGC, en Rhizobium leguminosarum dieron lugar a síntomas de falta de nitrógeno en plantas tanto de guisante como de alubia. Se encontró que era esencial la absorción de aminoácidos de cadena ramificada (AACRs) para una efectiva FBN, al menos en especies de R. leguminosarum. Otro enfoque experimental para comprender mejor el papel del metabolismo de los aminoácidos en los nódulos es la aplicación de compuestos que inhiben la biosíntesis de AACRs en las células de las plantas tales como los herbicidas del grupo B. Estos enfoques nos permitieron verificar como la inhibición del transporte de AACRs entre simbiontes tuvo un mayor efecto en el metabolismo nodular que la inhibición de la biosíntesis de AACRs. De hecho, la biosíntesis de AACRs fue también inhibida debido a la doble mutación de aap/bra. En el capítulo dos, también evaluamos el efecto del estrés hídrico sobre el proteoma nodular, ya que entre las estrategias que usan las plantas en respuesta a estreses abióticos hay varias relacionadas con el metabolismo de aminoácidos. Este estudio destaca la relevancia de aminoácidos poco abundantes, como metionina, aminoácidos aromáticos o el ácido γ-aminobutírico, en la respuesta al estrés hídrico. Finalmente, hasta ahora no se ha intentado llevar a cabo un enfoque integral en el que se analicen los posibles cambios causados por sequía en la distribución de carbono (C) y, además, se analice el efecto sobre el consumo o la acumulación de metabolitos en todos los órganos de la planta. Con este propósito, en el capítulo tres, se analizó el efecto de la sequía tanto en la distribución de [U-13C]-sacarosa como en el contenido ureidos, ácidos orgánicos y carbohidratos. Descubrimos que la sequía disminuyó el transporte de 13C a los tejidos sumidero y cambió la prioridad en la distribución de C entre los órganos sumideros.
  • PublicationOpen Access
    Increased ascorbate biosynthesis does not improve nitrogen fixation nor alleviate the effect of drought stress in nodulated Medicago truncatula plants
    (Frontiers Media, 2021) Cobos Porras, Inmaculada Libertad; Rubia Galiano, María Isabel; Huertas, Raúl; Kum, David; Dalton, David A.; Udvardi, Michael; Arrese-Igor Sánchez, César; Larrainzar Rodríguez, Estíbaliz; Institute for Multidisciplinary Research in Applied Biology - IMAB; Gobierno de Navarra / Nafarroako Gobernua, PC112-113 LEGUSI
    Legume plants are able to establish nitrogen-fixing symbiotic relations with Rhizobium bacteria. This symbiosis is, however, affected by a number of abiotic constraints, particularly drought. One of the consequences of drought stress is the overproduction of reactive oxygen (ROS) and nitrogen species (RNS), leading to cellular damage and, ultimately, cell death. Ascorbic acid (AsA), also known as vitamin C, is one of the antioxidant compounds that plants synthesize to counteract this oxidative damage. One promising strategy for the improvement of plant growth and symbiotic performance under drought stress is the overproduction of AsA via the overexpression of enzymes in the Smirnoff-Wheeler biosynthesis pathway. In the current work, we generated Medicago truncatula plants with increased AsA biosynthesis by overexpressing MtVTC2, a gene coding for GDP-L-galactose phosphorylase. We characterized the growth and physiological responses of symbiotic plants both under well-watered conditions and during a progressive water deficit. Results show that increased AsA availability did not provide an advantage in terms of plant growth or symbiotic performance either under well-watered conditions or in response to drought.
  • PublicationOpen Access
    A novel biosensor to monitor proline in pea root exudates and nodules under osmotic stress and recovery
    (Springer, 2020) Rubia Galiano, María Isabel; Ramachandran, Vinoy K.; Arrese-Igor Sánchez, César; Larrainzar Rodríguez, Estíbaliz; Poole, Philip S.; Institute for Multidisciplinary Research in Applied Biology - IMAB
    Background and aims: Plant and bacteria are able to synthesise proline, which acts as a compound to counteract the negative effects of osmotic stresses. Most methodologies rely on the extraction of compounds using destructive methods. This work describes a new proline biosensor that allows the monitoring of proline levels in a non-invasive manner in root exudates and nodules of legume plants. Methods: The proline biosensor was constructed by cloning the promoter region of pRL120553, a gene with high levels of induction in the presence of proline, in front of the lux cassette in Rhizobium leguminosarum bv. viciae. Results: Free-living assays show that the proline biosensor is sensitive and specific for proline. Proline was detected in both root exudates and nodules of pea plants. The luminescence detected in bacteroids did not show variations during osmotic stress treatments, but significantly increased during recovery. Conclusions: This biosensor is a useful tool for the in vivo monitoring of proline levels in root exudates and bacteroids of symbiotic root nodules, and it contributes to our understanding of the metabolic exchange occurring in nodules under abiotic stress conditions.