Samanes Pascual, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Samanes Pascual
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access Modeling solar cavity receivers: a review and comparison of natural convection heat loss correlations(Elsevier, 2015) Samanes Pascual, Javier; García-Barberena Labiano, Javier; Zaversky, Fritz; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenAs the main difficulty of modeling cavity receivers is determining natural convection heat losses, this paper presents a survey of the different natural convection correlations developed by several authors to model natural convective heat losses from cavity receivers of solar thermal power tower plants. The different correlations studied for modeling convective heat losses are later compared by performing simulations on an implemented cavity receiver. For this work a model of a PS10-like cavity receiver, using Solar Salt as the heat transfer fluid, is implemented in Modelica. The simulations have shown how the results of four out of the five studied correlations do agree, while one of the analyzed correlations clearly overestimates convective heat losses for the simulations performed.Publication Open Access Enhancing engineering competencies curricula in the context of university-industry chairs(IEEE, 2023) Sanchis Gúrpide, Pablo; San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Samanes Pascual, Javier; Parra Laita, Íñigo de la; Ursúa Rubio, Alfredo; Astrain Ulibarrena, David; Goicoechea Fernández, Javier; Institute of Smart Cities - ISCUniversity-industry Chairs can play a key role to enhance the acquisition of certain curricular competencies of the Engineering Degrees such as teamwork capability, oral and written communication skills, entrepreneurship initiative and industrial environment knowledge, all of them highly valued and long demanded by the industrial companies. This paper describes the organizational framework and the main programs of the Chair of Renewable Energies of the Public University of Navarre and evaluates how it is contributing effectively to improving the acquisition of these competencies and skills.Publication Open Access Active damping based on the capacitor voltage positive-feedback for grid-connected power converters with LCL filter(IEEE, 2019) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe capacitor voltage positive-feedback is a widely extended active damping strategy. It can effectively damp the LCL output filter resonant poles for low ratios of resonance to sampling frequencies. However, the existing delays in the control loop limit the applicability of the capacitor-voltage positive-feedback. For high ratios of resonance to sampling frequencies, it becomes ineffective and can even destabilize the system. This limitation is overcome in this paper by adjusting the delay in the feedback path. With the delay adjustment, a robust damping can be achieved if the delays are properly considered, including the filters, and the grid impedance variations are taken into account. Simulation results validate the proposed active damping strategy.Publication Open Access Multisampled-capacitor-voltage active damping for parallel interleaved grid connected voltage source converters with LCL filter(IEEE, 2017) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaParallel interleaved converters for high power renewable energy systems present stability issues at the LCL resonance frequency. A multisampled measurement and filtering strategy is proposed to stabilize the system based on the capacitor voltage derivative active damping, overcoming its limitations for low switching power converters. The effects of the delays on the stability of the active damping strategy would be analysed. The solution developed is robust against grid inductance variations, ensuring the fulfilment of the stringent harmonic grid codes.Publication Open Access Common-mode and phase-to-ground voltage reduction in back-to-back power converters with discontinuous PWM(IEEE, 2020) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Juankorena Saldias, Xabier; Gironés Remírez, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDiscontinuous space vector pulsewidth modulation (DSVPWM) techniques are an interesting option for three-phase, two-level power converters when efficiency is a key factor. Such is the case of back-to-back (B2B) power converters used mainly in wind energy conversion systems and electrical drives. The application of DSVPWMs to B2B converters increases the common-mode (CM) and phase-to-ground (PG) voltages by 50%, compared to conventional space vector pulsewidth modulation (SVPWM7). Higher CM and PG voltages cause bearing currents and insulation stress, which reduce system reliability. In this article, this problem is addressed and two DSVPWM strategies are presented to reduce the CM and PG voltages in B2B power converters. In the first proposal, the CM and PG are both limited to the same values as the conventional SVPWM7 without introducing additional commutations. In the second proposal, a further modification is added to reduce the CM by 50%, compared to the SVPWM7, although this modulation strategy eventually requires two additional commutations in certain periods. Experimental and simulation results validate the performance of the proposed strategies.Publication Open Access On the limits of the capacitor-voltage active damping for grid-connected power converters with LCL filter(IEEE, 2018) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaActive damping strategies are widely extended to avoid stability issues at the LCL filter resonant poles in grid-connected voltage source converters. The capacitor voltage derivative active damping effectively damps the filter resonant poles without additional sensors, but it loses its effectiveness as the resonance frequency approaches the converter control Nyquist frequency, influenced by the existing delays in the control loop. To reduce this limitation, the delays can be reduced by performing a multisampled derivative, however, even though the stability limits might be extended, the oversampled approach might increase noise amplification problems. An appropriate filtering solution is required in the feedback path in order to reduce noise amplification and eliminate aliasing problems, without compromising the stability, as a result of a modification in the active damping feedback path. This work examines the limits of applicability of the capacitor voltage derivative strategy taking into account the filters used in the AD path, providing experimental results to validate the presented approach.Publication Open Access Control design and stability analysis of power converters: the discrete generalized Bode criterion(IEEE, 2021) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenFor the controller design and stability analysis of power electronic converters, the Bode stability criterion and its subsequent revisions are the most practical tools. However, even though the control of the power converter is usually implemented in a microprocessor, none of these methods is infallible when applied to a discrete system. This article therefore proposes a new stability criterion, named the Discrete Generalized Bode Criterion (DGBC). This method is based on the Nyquist criterion but developed from the open-loop Bode diagram, evaluated also at 0 Hz and at the Nyquist frequency. The proposed criterion combines the advantages of the Nyquist and Bode criteria, since it is always applicable and provides an interesting and useful tool for the controller design process. The method is applied to design an active damping control of an inverter with LCL filter, showing how the proposed criterion accurately predicts stability, in contrast to the existing Bode criteria. The theoretical analysis is validated through experimental results performed with a three-phase inverter and an LCL filter.Publication Open Access Dual-stage control strategy for a three-level neutral point clamped converter with selective harmonic mitigation PWM(IEEE, 2023-11-01) Rosado Galparsoro, Leyre; Norambuena, Margarita; Samanes Pascual, Javier; Lezana, Pablo; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaGrid-connected converters must meet the requirements imposed by grid codes, such as harmonic emission limits and grid voltage support during voltage dips. Selective harmonic mitigation pulsewidth modulation (SHMPWM) is a very interesting technique for high power converters to meet the maximum harmonic emission levels, while keeping a low switching frequency. However, the combination of this modulation with a proportional integral (PI) controller requires slow dynamics, which makes it difficult to comply with the dynamic response requirements of grid codes. As an alternative, model predictive control (MPC) offers a very fast dynamic response, but a wide spread harmonic spectrum in steady state. Thus, the combination of MPC with a PI controller with SHMPWM is advantageous. In this work, a dual-stage control strategy is implemented. During transients, finite control set MPC (FCS-MPC) is activated to rapidly drive the current to the desired reference, while in steady state, the PI controller with SHMPWM is used. Therefore, the dual-stage control strategy allows to comply with the two requirements of grid codes, becoming a suitable strategy for grid-connected converters.Publication Open Access Control strategy for a droop-controlled grid-connected DFIG wind turbine(IEEE, 2022) Oraa Iribarren, Iker; Samanes Pascual, Javier; López Taberna, Jesús; Gubía Villabona, Eugenio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe application of droop control techniques without inner current control loops to doubly-fed induction generator (DFIG) based wind turbines does not allow to provide a stable response at all operating points in terms of rotational speed and active and reactive power. After modeling the system dynamics and analyzing the causes of instability, this paper proposes a control strategy that allows to stabilize the system response at all possible operating points. Simulation results performed in MATLAB/Simulink validate the proposed control strategy proving its effectiveness.Publication Open Access Role of student associations in the acquisition of competences in university engineering programs(IEEE, 2023) Samanes Pascual, Javier; Parra Laita, Íñigo de la; Berrueta Irigoyen, Alberto; Rosado Galparsoro, Leyre; Soto Cabria, Adrián; Elizondo Martínez, David; Catalán Ros, Leyre; Sanchis Gúrpide, Pablo; Institute of Smart Cities - ISCStudents in the STEM field (Science, Technology, Engineering and Mathematics), do not only require deep technical knowledge, but a complete set of global skills related to management, teamwork, lifelong learning, personal development, communications skills or proactiveness, abilities often referred as soft-skills. Student-led organizations, and specifically, university student associations, are one of the best alternatives to promote the acquisition of soft-skills in STEM high education fields. These skills are competences already included in official university programs that can hardly be addressed or acquired from traditional university education. This article studies how student enrollment in student led organizations (SLOs), with an active participation on their organization and activities, allows engineering students to achieve a better development of these soft skills. As case study, a medium size university, with 9000-students and eleven SLOs, six of them focused on STEM related fields, is used in this paper. A survey is conducted among the university community to identify their degree of participation in SLOs, and to test whether participation in these initiatives increases students' self-perception of their soft skill acquisition during their university studies. This survey shows how students of engineering programs, with a high degree of involvement in SLOs, demonstrated greater confidence in their soft skills at the end of their university years.