Samanes Pascual, Javier
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Samanes Pascual
First Name
Javier
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
32 results
Search Results
Now showing 1 - 10 of 32
Publication Open Access Dual-stage control strategy for a three-level neutral point clamped converter with selective harmonic mitigation PWM(IEEE, 2023-11-01) Rosado Galparsoro, Leyre; Norambuena, Margarita; Samanes Pascual, Javier; Lezana, Pablo; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaGrid-connected converters must meet the requirements imposed by grid codes, such as harmonic emission limits and grid voltage support during voltage dips. Selective harmonic mitigation pulsewidth modulation (SHMPWM) is a very interesting technique for high power converters to meet the maximum harmonic emission levels, while keeping a low switching frequency. However, the combination of this modulation with a proportional integral (PI) controller requires slow dynamics, which makes it difficult to comply with the dynamic response requirements of grid codes. As an alternative, model predictive control (MPC) offers a very fast dynamic response, but a wide spread harmonic spectrum in steady state. Thus, the combination of MPC with a PI controller with SHMPWM is advantageous. In this work, a dual-stage control strategy is implemented. During transients, finite control set MPC (FCS-MPC) is activated to rapidly drive the current to the desired reference, while in steady state, the PI controller with SHMPWM is used. Therefore, the dual-stage control strategy allows to comply with the two requirements of grid codes, becoming a suitable strategy for grid-connected converters.Publication Open Access Control design and stability analysis of power converters: the discrete generalized Bode criterion(IEEE, 2021) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenFor the controller design and stability analysis of power electronic converters, the Bode stability criterion and its subsequent revisions are the most practical tools. However, even though the control of the power converter is usually implemented in a microprocessor, none of these methods is infallible when applied to a discrete system. This article therefore proposes a new stability criterion, named the Discrete Generalized Bode Criterion (DGBC). This method is based on the Nyquist criterion but developed from the open-loop Bode diagram, evaluated also at 0 Hz and at the Nyquist frequency. The proposed criterion combines the advantages of the Nyquist and Bode criteria, since it is always applicable and provides an interesting and useful tool for the controller design process. The method is applied to design an active damping control of an inverter with LCL filter, showing how the proposed criterion accurately predicts stability, in contrast to the existing Bode criteria. The theoretical analysis is validated through experimental results performed with a three-phase inverter and an LCL filter.Publication Open Access MIMO based decoupling strategy for grid connected power converters controlled in the synchronous reference frame(IEEE, 2018) Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPower converters are frequently connected to the grid through a LCL filter, controlling its power transfer through a current control loop in the synchronous reference frame. In this reference frame, cross coupling terms appear between the current and voltages of the passive components, which, without a proper decoupling strategy, penalize the converter transient response and the current control adjustment. In this work, an intuitive decoupling strategy is presented to improve the dynamic behavior, based on Multiple-Input-Multiple-Output systems theory. The approach developed is particularly interesting in extremely weak grids, allowing an easier adjustment of the main controller.Publication Open Access Multisampled-capacitor-voltage active damping for parallel interleaved grid connected voltage source converters with LCL filter(IEEE, 2017) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaParallel interleaved converters for high power renewable energy systems present stability issues at the LCL resonance frequency. A multisampled measurement and filtering strategy is proposed to stabilize the system based on the capacitor voltage derivative active damping, overcoming its limitations for low switching power converters. The effects of the delays on the stability of the active damping strategy would be analysed. The solution developed is robust against grid inductance variations, ensuring the fulfilment of the stringent harmonic grid codes.Publication Open Access Active damping based on the capacitor voltage positive-feedback for grid-connected power converters with LCL filter(IEEE, 2019) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThe capacitor voltage positive-feedback is a widely extended active damping strategy. It can effectively damp the LCL output filter resonant poles for low ratios of resonance to sampling frequencies. However, the existing delays in the control loop limit the applicability of the capacitor-voltage positive-feedback. For high ratios of resonance to sampling frequencies, it becomes ineffective and can even destabilize the system. This limitation is overcome in this paper by adjusting the delay in the feedback path. With the delay adjustment, a robust damping can be achieved if the delays are properly considered, including the filters, and the grid impedance variations are taken into account. Simulation results validate the proposed active damping strategy.Publication Open Access Robust multisampled capacitor voltage active damping for grid-connected power converters(Elsevier, 2019) Samanes Pascual, Javier; Urtasun Erburu, Andoni; Gubía Villabona, Eugenio; Petri, Alberto; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe derivative feedback of the capacitor voltage is one of the most extended active damping strategies, used to eliminate stability problems in grid-connected power converters with an LCL filter. This strategy is equivalent to the implementation of a virtual impedance in parallel with the filter capacitor. This virtual impedance is strongly affected by the control loop delays and frequency, creating changes in the sign of the emulated virtual resistor, and raising instability regions where the active damping is ineffective. As a consequence, the LCL resonance frequency is restricted to vary, as the effective grid inductance changes, within the active damping stability region. This is an additional restriction imposed on the LCL filter design that can compromise the achievement of an optimised design. For this reason, in this work, a different strategy is presented; by adjusting the delay in the active damping feedback path, it becomes stable within the range where the LCL resonance frequency can be located for a given filter design, achieving a robust damping. Analytical expressions are provided to adjust this delay. To widen the stability region of the capacitor voltage derivative active damping, a multisampled derivative is implemented, overcoming its limitations close to the control Nyquist frequency. Experimental and simulation results validate the active damping strategy presented.Publication Open Access Control of a photovoltaic array interfacing current-mode-controlled boost converter based on virtual impedance emulation(IEEE, 2019) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenDue to the nonlinear characteristics of a photovoltaic (PV) array, its regulation is highly dependent on the operating point. Focusing on a dc-dc boost converter, this paper first shows how the PV voltage and inductor current controls are affected by the PV array. It then proposes to emulate an impedance virtually connected to the PV array, making it possible to greatly improve the control robustness. Thanks to the proposed strategy, the crossover frequency variation for the whole operating range is reduced from 42 times for the traditional control to 3.5 times when emulating parallel resistance or to 1.4 times when emulating series and parallel resistances, all with simple implementation. Experimental results with a commercial PV inverter and a 4-kWp PV array validate the theoretical analysis and demonstrate the superior performance of the proposed control.Publication Open Access Common-mode and phase-to-ground voltage reduction in back-to-back power converters with discontinuous PWM(IEEE, 2020) Samanes Pascual, Javier; Gubía Villabona, Eugenio; Juankorena Saldias, Xabier; Gironés Remírez, Carlos; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDiscontinuous space vector pulsewidth modulation (DSVPWM) techniques are an interesting option for three-phase, two-level power converters when efficiency is a key factor. Such is the case of back-to-back (B2B) power converters used mainly in wind energy conversion systems and electrical drives. The application of DSVPWMs to B2B converters increases the common-mode (CM) and phase-to-ground (PG) voltages by 50%, compared to conventional space vector pulsewidth modulation (SVPWM7). Higher CM and PG voltages cause bearing currents and insulation stress, which reduce system reliability. In this article, this problem is addressed and two DSVPWM strategies are presented to reduce the CM and PG voltages in B2B power converters. In the first proposal, the CM and PG are both limited to the same values as the conventional SVPWM7 without introducing additional commutations. In the second proposal, a further modification is added to reduce the CM by 50%, compared to the SVPWM7, although this modulation strategy eventually requires two additional commutations in certain periods. Experimental and simulation results validate the performance of the proposed strategies.Publication Open Access Role of student associations in the acquisition of competences in university engineering programs(IEEE, 2023) Samanes Pascual, Javier; Parra Laita, Íñigo de la; Berrueta Irigoyen, Alberto; Rosado Galparsoro, Leyre; Soto Cabria, Adrián; Elizondo Martínez, David; Catalán Ros, Leyre; Sanchis Gúrpide, Pablo; Institute of Smart Cities - ISCStudents in the STEM field (Science, Technology, Engineering and Mathematics), do not only require deep technical knowledge, but a complete set of global skills related to management, teamwork, lifelong learning, personal development, communications skills or proactiveness, abilities often referred as soft-skills. Student-led organizations, and specifically, university student associations, are one of the best alternatives to promote the acquisition of soft-skills in STEM high education fields. These skills are competences already included in official university programs that can hardly be addressed or acquired from traditional university education. This article studies how student enrollment in student led organizations (SLOs), with an active participation on their organization and activities, allows engineering students to achieve a better development of these soft skills. As case study, a medium size university, with 9000-students and eleven SLOs, six of them focused on STEM related fields, is used in this paper. A survey is conducted among the university community to identify their degree of participation in SLOs, and to test whether participation in these initiatives increases students' self-perception of their soft skill acquisition during their university studies. This survey shows how students of engineering programs, with a high degree of involvement in SLOs, demonstrated greater confidence in their soft skills at the end of their university years.Publication Open Access Robust active damping strategy for DFIG wind turbines(IEEE, 2021) Rosado Galparsoro, Leyre; Samanes Pascual, Javier; Gubía Villabona, Eugenio; López Taberna, Jesús; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónDoubly fed induction generators (DFIGs) with an LCL filter are widely used for wind power generation. In these energy conversion systems, there is an interaction between the grid-side converter (GSC) and the rotor-side converter (RSC) control loops, the generator and the LCL filter that must be properly modeled. Such interaction between the GSC and the RSC proves to have a significant influence on the stability. Several active damping (AD) methods for grid-connected converters with an LCL filter have been proposed, nevertheless, the application of these techniques to a DFIG wind turbine is not straightforward, as revealed in this article. To achieve a robust damping irrespective of the grid inductance, this article proposes an AD strategy based on the capacitor current feedback and the adjustment of the control delays to emulate a virtual impedance, in parallel with the filter capacitor, with a dominant resistive component in the range of possible resonance frequencies. This work also proves that, by applying the AD strategy in both converters simultaneously, the damping of the system resonant poles is maximized when a specific value of the grid inductance is considered. Experimental results show the interaction between the GSC and the RSC and validate the proposed AD strategy. © 1986-2012 IEEE.