Person:
Ezcurdia Aguirre, Íñigo Fermín

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Ezcurdia Aguirre

First Name

Íñigo Fermín

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0003-4268-6760

person.page.upna

811121

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Mid-air contactless haptics to augment VR experiences
    (Association for Computing Machinery, 2023) Ezcurdia Aguirre, Íñigo Fermín; Fernández Ortega, Unai Javier; Olaz Moratinos, Xabier; Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    We present four technologies to deliver contactless haptic stimuli for enriching Virtual Reality (VR) experiences. The technologies are electrostatic piloerection, focused light-induced heat, electric plasma, and ultrasound; the user does not require to wear or touch any device. We describe the working principle behind each technology and how these technologies can provide new exciting sensations in VR experiences. Additionally, we showcase a VR demo experience gathering all four remote haptic stimuli along a circuit for the users to experiment with these new sensations.
  • PublicationOpen Access
    Hand-as-a-prop: using the hand as a haptic proxy for manipulation in virtual reality
    (Springer, 2023) Marichal Baráibar, Sebastián Roberto; Ezcurdia Aguirre, Íñigo Fermín; Morales González, Rafael; Ortiz Nicolás, Amalia; Marzo Pérez, Asier; Ardaiz Villanueva, Óscar; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Haptic feedback can be almost as important as visual information in virtual reality environments. On the one hand, in Active Haptic Feedback, specialized devices such as vibrotactile gloves are employed; however, these solutions can be expensive, vendor-specific or cumbersome to setup. On the other hand, Passive Haptic Feedback approaches use inexpensive objects as proxies for the virtual entities; but mapping virtual objects to real props is not scalable nor flexible. We propose the Hand-as-a-Prop technique, which consists in using human hands as object props. We implemented two modalities: Self, where the user¿s non-dominant hand act as the virtual object while the dominant hand grabs, translates and releases it; and External, where the hand of another person is used. Hand-as-a-Prop can represent multiple shapes with a single prop and does not require extra hardware. We performed an evaluation comparing both Self and External Hand-as-a-Prop with traditional Object Props in terms of user experience (goodness, ease, realism, fatigue, and preference) and performance (task completion time and translation time). Results showed that Hand-as-a-Prop was rated as neutral tending to positive, and in some cases, the performance was similar to Object Props. Users preferred Self Hand-as-a-Prop over External Hand-as-a-Prop and also obtained better results.
  • PublicationOpen Access
    Interactions with digital mountains: tangible, immersive and touch interactive virtual reality
    (Association for Computing Machinery (ACM), 2020) Ardaiz Villanueva, Óscar; Marzo Pérez, Asier; Baztán Larrea, Rubén; Ezcurdia Aguirre, Íñigo Fermín; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Gobierno de Navarra / Nafarroako Gobernua, PI043-2019; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Digitization of Earth mountains and terrains has facilitated to plan journeys, manage natural resources, and learn about the Earth from the comfort of our homes. We aim to develop new interactions on digital mountains with novel interfaces: 3D printed representation of a mountain, an immersive virtual reality visualization, and two different touch interactive interfaces for immersive virtual reality visualizations: a 3D printed mountain with touch sensors and a multitouch tablet. We show how we have built such prototypes based on digital data retrieved from a map provider, and which interactions are possible with each interaction device. We explain how we design and conduct evaluation.