López Ortega, Alberto

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

López Ortega

First Name

Alberto

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Crossover from individual to collective magnetism in dense nanoparticle systems: local anisotropy versus dipolar interactions
    (Nano-Micro, 2022) Sánchez, Elena H.; Vasilakaki, Marianna; Lee, Su Seong; Normile, Peter S.; Andersson, Mikael S.; Mathieu, Roland; López Ortega, Alberto; Pichon, Benoit P.; Peddis, Davide; Binns, Chris; Nordblad, Per; Trohidou, Kalliopi; Nogués, Josep; Toro, José A. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2020
    Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole–dipole interaction (Edd) to nanoparticle anisotropy (KefV, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents “marginal” features. Thus, a threshold of KefV/Edd ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX(interacting)/TMAX(non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.
  • PublicationOpen Access
    Hardening of cobalt ferrite nanoparticles by local crystal strain release: implications for rare earth free magnets
    (American Chemical Society, 2022) Muzzi, Beatrice; Lottini, Elisabetta; Yaacoub, Nader; Peddis, Davide; Bertoni, Giovanni; Julián Fernández, César de; Sangregorio, Claudio; López Ortega, Alberto; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.