Crossover from individual to collective magnetism in dense nanoparticle systems: local anisotropy versus dipolar interactions

Date

2022

Authors

Sánchez, Elena H.
Vasilakaki, Marianna
Lee, Su Seong
Normile, Peter S.
Andersson, Mikael S.
Mathieu, Roland
Pichon, Benoit P.
Peddis, Davide
Binns, Chris

Director

Publisher

Nano-Micro
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • MINECO//MAT2015-65295-R/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106229RB-I00/ES/ recolecta
  • MEC//BEAGAL18%2F00095/
  • European Commission/Horizon 2020 Framework Programme/731976/ openaire
  • European Commission/Horizon Europe/101046909/ openaire
Impacto

Abstract

Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole–dipole interaction (Edd) to nanoparticle anisotropy (KefV, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents “marginal” features. Thus, a threshold of KefV/Edd ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX(interacting)/TMAX(non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.

Description

Keywords

Dipolar interactions, Magnetic anisotropy, Magnetic nanoparticles, Superspin glass

Department

Ciencias / Zientziak / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Sánchez, E. H., Vasilakaki, M., Lee, S. S., Normile, P. S., Andersson, M. S., Mathieu, R., López‐Ortega, A., Pichon, B. P., Peddis, D., Binns, C., Nordblad, P., Trohidou, K., Nogués, J., & De Toro, J. A. (2022). Crossover from individual to collective magnetism in dense nanoparticle systems: Local anisotropy versus dipolar interactions. Small, 18(28), 2106762. https://doi.org/10.1002/smll.202106762

item.page.rights

2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.