Person:
López Ortega, Alberto

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

López Ortega

First Name

Alberto

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

ORCID

0000-0003-3440-4444

person.page.upna

812023

Name

Search Results

Now showing 1 - 4 of 4
  • PublicationOpen Access
    Crossover from individual to collective magnetism in dense nanoparticle systems: local anisotropy versus dipolar interactions
    (Nano-Micro, 2022) Sánchez, Elena H.; Vasilakaki, Marianna; Lee, Su Seong; Normile, Peter S.; Andersson, Mikael S.; Mathieu, Roland; López Ortega, Alberto; Pichon, Benoit P.; Peddis, Davide; Binns, Chris; Nordblad, Per; Trohidou, Kalliopi; Nogués, Josep; Toro, José A. de; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole–dipole interaction (Edd) to nanoparticle anisotropy (KefV, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents “marginal” features. Thus, a threshold of KefV/Edd ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX(interacting)/TMAX(non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.
  • PublicationOpen Access
    Hardening of cobalt ferrite nanoparticles by local crystal strain release: implications for rare earth free magnets
    (American Chemical Society, 2022) Muzzi, Beatrice; Lottini, Elisabetta; Yaacoub, Nader; Peddis, Davide; Bertoni, Giovanni; Julián Fernández, César de; Sangregorio, Claudio; López Ortega, Alberto; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.
  • PublicationOpen Access
    Magnetically activated 3D printable polylactic acid/polycaprolactone/magnetite composites for magnetic induction heating generation
    (Springer, 2023) Galarreta Rodríguez, Itziar; López Ortega, Alberto; Garayo Urabayen, Eneko; Beato López, Juan Jesús; La Roca, Paulo Matías; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Additive manufacturing technology has attracted the attention of industrial and technological sectors due to the versatility of the design and the easy manufacture of structural and functional elements based on composite materials. The embedding of magnetic nanoparticles in the polymeric matrix enables the development of an easy manufacturing process of low-cost magnetically active novel polymeric composites. In this work, we report a series of magnetic composites prepared by solution casting method combining 5 to 60 wt.% of 140 ± 50 nm commercial Fe3O4 nanoparticles, with a semi-crystalline, biocompatible, and biodegradable polymeric blend made of polylactic acid (PLA) and polycaprolactone (PCL). The composites were extruded, obtaining 1.5 ± 0.2 mm diameter continuous and flexible filaments for fused deposition modelling 3D printing. The chemical, magnetic, and calorimetric properties of the obtained filaments were investigated by differential scanning calorimetry, thermogravimetric analysis, magnetometry, and scanning electron microscopy. Furthermore, taking advantage of the magnetic character of the filaments, their capability to generate heat under the application of low-frequency alternating magnetic fields (magnetic induction heating) was analyzed. The obtained results expose the versatility of these easy manufacturing and low-cost filaments, where selecting a desired composition, the heating capacity can be properly adjusted for those applications where magnetic induction plays a key role (i.e., magnetic hyperthermia, drug release, heterogeneous catalysis, water electrolysis, gas capture, or materials synthesis).
  • PublicationOpen Access
    Direct evidence of a graded magnetic interface in bimagnetic core/shell nanoparticles using electron magnetic circular dichroism (EMCD)
    (American Chemical Society, 2021) Pozo Bueno, Daniel del; Varela, María; Estrader, Marta; López Ortega, Alberto; Gómez Roca, Alejando; Nogués, Josep; Peiró, Francesca; Estradé, Sònia; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles.