Person: Rodríguez Trías, Rafael
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Rodríguez Trías
First Name
Rafael
person.page.departamento
Ingeniería
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
29 results
Search Results
Now showing 1 - 10 of 29
Publication Open Access Icephobic coating based on novel SLIPS made of infused PTFE fibers for aerospace application(MDPI, 2024) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Rehfeld, Nadine; Stake, Andreas; García, Paloma; Carreño, Francisco; Mora, Julio; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1929The development of slippery surfaces has been widely investigated due to their excellent icephobic properties. A distinct kind of an ice-repellent structure known as a slippery liquid-infused porous surface (SLIPS) has recently drawn attention due to its simplicity and efficacy as a passive ice-protection method. These surfaces are well known for exhibiting very low ice adhesion values (τice < 20 kPa). In this study, pure Polytetrafluoroethylene (PTFE) fibers were fabricated using the electrospinning process to produce superhydrophobic (SHS) porous coatings on samples of the aeronautical alloy AA6061-T6. Due to the high fluorine–carbon bond strength, PTFE shows high resistance and chemical inertness to almost all corrosive reagents as well as extreme hydrophobicity and high thermal stability. However, these unique properties make PTFE difficult to process. For this reason, to develop PTFE fibers, the electrospinning technique has been used by an PTFE nanoparticles (nP PTFE) dispersion with addition of a very small amount of polyethylene oxide (PEO) followed with a sintering process (380 °C for 10 min) to melt the nP PTFE together and form uniform fibers. Once the porous matrix of PTFE fibers is attached, lubricating oil is added into the micro/nanoscale structure in the SHS in place of air to create a SLIPS. The experimental results show a high-water contact angle (WCA) ≈ 150° and low roll-off angle (αroll-off) ≈ 22° for SHS porous coating and a decrease in the WCA ≈ 100° and a very low αroll-off ≈ 15° for SLIPS coating. On one hand, ice adhesion centrifuge tests were conducted for two types of icing conditions (glaze and rime) accreted in an ice wind tunnel (IWT), as well as static ice at different ice adhesion centrifuge test facilities in order to compare the results for SHS, SLIPs and reference materials. This is considered a preliminary step in standardization efforts where similar performance are obtained. On the other hand, the ice adhesion results show 65 kPa in the case of SHS and 4.2 kPa of SLIPS for static ice and <10 kPa for rime and glace ice. These results imply a significant improvement in this type of coatings due to the combined effect of fibers PTFE and silicon oil lubricant.Publication Open Access Comparative study of electrospun polydimethylsiloxane fibers as a substitute for fluorine-based polymeric coatings for hydrophobic and icephobic applications(MDPI, 2024-11-30) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Santos, Cleis; Rehfeld, Nadine; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Univertsitate Publikoa, PJUPNA1929The development of superhydrophobic, waterproof, and breathable membranes, as well as icephobic surfaces, has attracted growing interest. Fluorinated polymers like PTFE or PVDF are highly effective, and previous research by the authors has shown that combining these polymers with electrospinning-induced roughness enhances their hydro- and ice-phobicity. The infusion of these electrospun mats with lubricant oil further improves their icephobic properties, achieving a slippery liquid-infused porous surface (SLIPS). However, their environmental impact has motivated the search for fluorine-free alternatives. This study explores polydimethylsiloxane (PDMS) as an ideal candidate because of its intrinsic properties, such as low surface energy and high flexibility, even at very low temperatures. While some published results have considered this polymer for icephobic applications, in this work, the electrospinning technique has been used for the first time for the fabrication of 95% pure PDMS fibers to obtain hydrophobic porous coatings as well as breathable and waterproof membranes. Moreover, the properties of PDMS made it difficult to process, but these limitations were overcome by adding a very small amount of polyethylene oxide (PEO) followed by a heat treatment process that provides a mat of uniform fibers. The experimental results for the PDMS porous coating confirm a hydrophobic behavior with a water contact angle (WCA) ≈ 118° and roll-off angle (αroll-off) ≈ 55°. In addition, the permeability properties of the fibrous PDMS membrane show a high transmission rate (WVD) ≈ 51.58 g∙m−2∙d−1, providing breathability and waterproofing. Finally, an ice adhesion centrifuge test showed a low ice adhesion value of 46 kPa. These results highlight the potential of PDMS for effective icephobic and waterproof applications.Publication Open Access Mapping the research landscape of bauxite by-products (red mud): an evolutionary perspective from 1995 to 2022(Elsevier, 2024) Svobodova-Sedlackova, Adela; Calderón, Alejandro; Fernández, A. Inés; Chimenos, Josep Maria; Berlanga Labari, Carlos; Yücel, Onuralp; Barreneche, Camila; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2The global population growth has significantly impacted energy and raw material consumption, unmatched since the Industrial Revolution. Among metals, aluminium ranks second only to steel, with annual production exceeding 69 million tonnes. Due to its high demand, bauxite, the primary ore from which aluminium is extracted, is now classified as a critical material in the EU and the US, given the potential risk of supply shortages for essential applications. Geographical and production challenges surround bauxite, presenting geo-economic and environmental challenges. A critical concern in aluminium production is managing by-products, notably red mud, a bauxite residue, generating over 175 million tonnes annually worldwide. Comprehensive bibliometric research is imperative due to the high amount of bibliographical resources related to this topic, encompassing circular economy, re-valorisation, sustainability, and disposal. This study employs bibliometric methods to assess red mud valorisation, offering insights into research topics, influential authors, and key journals, shedding light on the past, present, and future of red mud research. Such bibliometric analysis not only highlights the current state of the field but also serves as a valuable tool for decision-making, enabling researchers and policymakers to identify trends, gaps, and areas for further exploration, fostering informed and sustainable advancements in the by-products of the aluminium industry.Publication Open Access Effect of the temperature in the mechanical properties of austenite, ferrite and sigma phases of duplex stainless steels using hardness, microhardness and nanoindentation techniques(MDPI, 2017) Argandoña Salinas, Gorka; Berlanga Labari, Carlos; Biezma Moraleda, María Victoria; Rivero Fuente, Pedro J.; Peña, Julio; Rodríguez Trías, Rafael; Mekanika, Energetika eta Materialen Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Mecánica, Energética y de MaterialesThe aim of this work is to study the hardness of the ferrite, austenite and sigma phases of a UNS S32760 superduplex stainless steel submitted to different thermal treatments, thus leading to different percentages of the mentioned phases. A comparative study has been performed in order to evaluate the resulting mechanical properties of these phases by using hardness, microhardness and nanoindentation techniques. In addition, optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) have been also used to identify their presence and distribution. Finally, the experimental results have shown that the resulting hardness values were increased as a function of a longer heat treatment duration which it is associated to the formation of a higher percentage of the sigma phase. However, nanoindentation hardness measurements of this sigma phase showed lower values than expected, being a combination of two main factors, namely the complexity of the sigma phase structure as well as the surface finish (roughness).Publication Open Access An alternative methodology for the evaluation of photocatalytic activity of polymeric coatings by monitoring dye degradation(MDPI, 2022) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2This work provides an alternative method for evaluating the photodegradation behaviour of different types of dyes such as Methylene Blue, Rhodamine B, Congo Red, Metanil Yellow, and Malachite Green. In this methodology, the coating is dyed with the chosen colorant and two beams of light are combined and channelled to a spot on the dyed coating through an optical fibre, the first one from an ultraviolet (UV) source (which is the responsible of activating photocatalysis) and the second one from a Visible light source, which is employed to monitor changes in colour along the time. The photocatalytic coating selected for testing this methodology consists of a mat of electrospun poly (acrylic acid) (PAA) fibres that acts as base film, furtherly coated by using layer-by-layer (LbL) assembly technique for the immobilization of two different photocatalytic metal oxide precursors (TiO2 and Fe2O3) nanoparticles. The morphological characterization of the samples has been implemented by means of scanning electron microscopy (SEM), confocal microscopy, and water contact angle measurements in order to analyse the resultant thickness, roughness, electrospun fibre diameter, and wettability. The experimental results clearly demonstrate the validity of the methodology to measure the photocatalytic activity in all dyed coatings, although significant differences have been observed depending on the selected dye.Publication Open Access Designing multifunctional protective PVC electrospun fibers with tunable properties(MDPI, 2020) Rivero Fuente, Pedro J.; Rosagaray Burdaspar, Iker; Fuertes Bonel, Juan Pablo; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1929In this work, the electrospinning technique is used for the fabrication of electrospun functional fibers with desired properties in order to show a superhydrophobic behavior. With the aim to obtain a coating with the best properties, a design of experiments (DoE) has been performed by controlling several inputs operating parameters, such as applied voltage, flow rate, and precursor polymeric concentration. In this work, the reference substrate to be coated is the aluminum alloy (60661T6), whereas the polymeric precursor is the polyvinyl chloride (PVC) which presents an intrinsic hydrophobic nature. Finally, in order to evaluate the coating morphology for the better performance, the following parameters-such as fiber diameter, surface roughness (Ra, Rq), optical properties, corrosion behavior, and wettability-have been deeply analyzed. To sum up, this is the first time that DoE has been used for the optimization of superhydrophobic or anticorrosive surfaces by using PVC precursor for the prediction of an adequate surface morphology as a function of the input operational parameters derived from electrospinning process with the aim to validate better performance.Publication Open Access Design of photocatalytic functional coatings based on the immobilization of metal oxide particles by the combination of electrospinning and layer-by-layer deposition techniques(MDPI, 2022) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Esparza Gorráiz, Joseba; Conde, Ana; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Gobierno de Navarra / Nafarroako GobernuaThis work reports the design and characterization of functional photocatalytic coatings based on the combination of two different deposition techniques. In a first step, a poly(acrylic acid) + β-Cyclodextrin (denoted as PAA+ β-CD) electrospun fiber mat was deposited by using the electrospinning technique followed by a thermal treatment in order to provide an enhancement in the resultant adhesion and mechanical resistance. In a second step, a layer-by-layer (LbL) assembly process was performed in order to immobilize the metal oxide particles onto the previously electrospun fiber mat. In this context, titanium dioxide (TiO2 ) was used as the main photocatalytic element, acting as the cationic element in the multilayer LbL structure. In addition, two different metal oxides, such as tungsten oxide (WO3 ) and iron oxide (Fe2O3 ), were added into PAA anionic polyelectrolyte solution with the objective of optimizing the photocatalytic efficiency of the coating. All of the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, showing an increase in the original fiber diameter and a decrease in roughness of the mats because of the LbL second step. The variation in the wettability properties from a superhydrophilic surface to a less wettable surface as a function of the incorporation of the metal oxides was also observed by means of water contact angle (WCA) measurements. With the aim of analyzing the photocatalytic efficiency of the samples, degradation of methyl blue (MB) azo-dye was studied, showing an almost complete discoloration of the dye in the irradiated area. This study reports a novel combination method of two deposition techniques in order to obtain a functional, homogeneous and efficient photocatalytic coating.Publication Open Access Antibacterial functionalization of PVD coatings on ceramics(MDPI, 2018) Osés Martínez de Zúñiga, Javier; García Fuentes, Gonzalo; García Lorente, José Antonio; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaThe application of surface treatments that incorporate silver or copper as antibacterial elements has become a common practice for a wide variety of medical devices and materials because of their effective activity against nosocomial infections. Ceramic tiles are choice materials for cladding the floors and walls of operation rooms and other hospital spaces. This study is focused on the deposition of biocide physical vapor deposition (PVD) coatings on glazed ceramic tiles. The objective was to provide antibacterial activity to the surfaces without worsening their mechanical properties. Silver and copper-doped chromium nitride (CrN) and titanium nitride (TiN) coatings were deposited on samples of tiles. A complete characterization was carried out in order to determine the composition and structure of the coatings, as well as their topographical and mechanical properties. The distribution of Ag and Cu within the coating was analyzed using glow discharge optical emission spectrometry (GD-OES) and field emission scanning electron microscope (FE-SEM). Roughness, microhardness, and scratch resistance were measured for all of the combinations of coatings and dopants, as well as their wettability. Finally, tests of antibacterial efficacy against Staphylococcus aureus and Escherichia coli were carried out, showing that all of the doped coatings had pronounced biocide activity.Publication Open Access The role of the fiber/bead hierarchical microstructure on the properties of pvdf coatings deposited by electrospinning(MDPI, 2021) Vicente Gómara, Adrián; Rivero Fuente, Pedro J.; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1929Among the various polymeric options employed for the deposition of electrospun coat-ings, poly(vinylidene fluoride) (PVDF) has been widely investigated thanks to its excellent mechanical properties, high chemical resistance, and good thermal stability. In this work, the electrospin-ning technique is used for the fabrication of functional PVDF fibers in order to identify and evaluate the influence of the experimental conditions on the nanofiber properties in terms of optical trans-mittance, wettability, corrosion resistance, and surface morphology. Some of these properties can play a relevant role in the prevention of ice formation in aircrafts. According to this, a matrix of 4 × 4 samples of aluminum alloy AA 6061T6 was successfully coated by controlling two operational input parameters such as the resultant applied voltage (from 10 up to 17.5 KV) and the flow rate (from 800 up to 1400 µL/h) for a fixed polymeric precursor concentration (15 wt.%). The experimental results have shown a multilevel fiber-bead structure where the formation of a fiber mesh directly depends on the selected operational parameters. Several microscopy and surface analysis techniques such as confocal microscopy (CM), field emission scanning electron microscopy (FE-SEM), UV/vis spectroscopy, and water contact angle (WCA) were carried out in order to corroborate the morphology, transmittance, and hydrophobicity of the electrospun fiber composite. Finally, the corrosion behavior was also evaluated by electrochemical tests (Tafel curves measurement), show-ing that the presence of electrospun PVDF fibers produces a relevant improvement in the resultant corrosion resistance of the coated aluminum alloys. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Publication Open Access A comparative study in the tribological behavior of DLC coatings deposited by HiPIMS technology with positive pulses(MDPI, 2020) García Lorente, José Antonio; Rivero Fuente, Pedro J.; Barba Areso, Eneko; Fernández, Iván; Santiago, José A.; Fuente, Gonzalo G.; Rodríguez Trías, Rafael; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; IngenieríaDuring the last few decades, diamond-like carbon (DLC) coatings were widely used for tribological applications, being an effective tool for improving the performance and the useful life of different machining tools. Despite its excellent properties, among which stand out a high hardness, a very low friction coefficient, and even an excellent wear resistance, one of the main drawbacks which limits its corresponding industrial applicability is the resultant adhesion in comparison with other commercially available deposition techniques. In this work, it is reported the tribological results of a scratch test, wear resistance, and nanoindentation of ta-C and WC:C DLC coatings deposited by means of a novel high-power impulse magnetron sputtering (HiPIMS) technology with 'positive pulses'. The coatings were deposited on 1.2379 tool steel which is of a high interest due to its great and wide industrial applicability. Finally, experimental results showed a considerable improvement in the tribological properties such as wear resistance and adhesion of both types of DLC coatings. In addition, it was also observed that the role of doping with W enables a significant enhancement on the adhesion for extremely high critical loads in the scratch tests.
- «
- 1 (current)
- 2
- 3
- »