Person:
Chamizo Ampudia, Alejandro

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Chamizo Ampudia

First Name

Alejandro

person.page.departamento

ORCID

person.page.upna

811497

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    IAOx induces the SUR phenotype and differential signalling from IAA under different types of nitrogen nutrition in Medicago truncatula roots
    (Elsevier, 2019) Buezo Bravo, Javier; Esteban Terradillos, Raquel; Cornejo Ibergallartu, Alfonso; López Gómez, Pedro; Marino Bilbao, Daniel; Chamizo Ampudia, Alejandro; Gil Idoate, María José; Martínez Merino, Víctor; Morán Juez, José Fernando; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Indole-3-acetaldoxime (IAOx) is a particularly relevant molecule as an intermediate in the pathway for tryptophan-dependent auxin biosynthesis. The role of IAOx in growth-signalling and root phenotype is poorly studied in cruciferous plants and mostly unknown in non-cruciferous plants. We synthesized IAOx and applied it to M. truncatula plants grown axenically with NO3-, NH4+ or urea as the sole nitrogen source. During 14 days of growth, we demonstrated that IAOx induced an increase in the number of lateral roots, especially under NH4+ nutrition, while elongation of the main root was inhibited. This phenotype is similar to the phenotype known as “superroot” previously described in SUR1- and SUR2-defective Arabidopsis mutants. The effect of IAOx, IAA or the combination of both on the root phenotype was different and dependent on the type of N-nutrition. Our results also showed the endogenous importance of IAOx in a legume plant in relation to IAA metabolism, and suggested IAOx long-distance transport depending on the nitrogen source provided. Finally, our results point out to CYP71A as the major responsible enzymes for IAA synthesis from IAOx.
  • PublicationEmbargo
    A new oxidative pathway of nitric oxide production from oximes in plants
    (Cell Press, 2024) López Gómez, Pedro; Buezo Bravo, Javier; Urra Rodríguez, Marina; Cornejo Ibergallartu, Alfonso; Esteban Terradillos, Raquel; Fernández de los Reyes, Jorge; Urarte Rodríguez, Estíbaliz; Rodríguez-Dobreva, Estefanía; Chamizo Ampudia, Alejandro; Eguaras, Alejandro; Wolf, Sebastian; Marino Bilbao, Daniel; Martínez Merino, Víctor; Morán Juez, José Fernando; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Institute for Advanced Materials and Mathematics - INAMAT2
    Nitric oxide (NO) is an essential reactive oxygen species and a signal molecule in plants. Although several studies have proposed the occurrence of oxidative NO production, only reductive routes for NO production, such as the nitrate (NO-3) -upper-reductase pathway, have been evidenced to date in land plants. However, plants grown axenically with ammonium as the sole source of nitrogen exhibit contents of nitrite and NO3, evidencing the existence of a metabolic pathway for oxidative production of NO. We hypothesized that ox- imes, such as indole-3-acetaldoxime (IAOx), a precursor to indole-3-acetic acid, are intermediate oxidation products in NO synthesis. We detected the production of NO from IAOx and other oximes catalyzed by peroxidase (POD) enzyme using both 4-amino-5-methylamino-20,70-difluorescein fluorescence and chem- iluminescence. Flavins stimulated the reaction, while superoxide dismutase inhibited it. Interestingly, mouse NO synthase can also use IAOx to produce NO at a lower rate than POD. We provided a full mech- anism for POD-dependent NO production from IAOx consistent with the experimental data and supported by density functional theory calculations. We showed that the addition of IAOx to extracts from Medicago truncatula increased the in vitro production of NO, while in vivo supplementation of IAOx and other oximes increased the number of lateral roots, as shown for NO donors, and a more than 10-fold increase in IAOx dehydratase expression. Furthermore, we found that in vivo supplementation of IAOx increased NO pro- duction in Arabidopsis thaliana wild-type plants, while prx33-34 mutant plants, defective in POD33-34, had reduced production. Our data show that the release of NO by IAOx, as well as its auxinic effect, explain the superroot phenotype. Collectively, our study reveals that plants produce NO utilizing diverse molecules such as oximes, POD, and flavins, which are widely distributed in the plant kingdom, thus intro- ducing a long-awaited oxidative pathway to NO production in plants. This knowledge has essential impli- cations for understanding signaling in biological systems.