Korili, Sophia A.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Korili

First Name

Sophia A.

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 56
  • PublicationOpen Access
    Heterogeneous Fenton- and photo-Fenton-like catalytic degradation of emerging pollutants using Fe2O3/TiO2/pillared clays synthesized from aluminum industrial wastes
    (Elsevier, 2023-04-01) Cardona Rodríguez, Yaneth; Wegrzyn, Agnieszka; Miskowiec, Pawel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The presence of emerging pollutants (EPs) in water is a major environmental concern. This study evaluates for the first time the removal of three EPs, namely triclosan (TCS), 2,6-dichlorophenol (2,6-DCP), and bisphenol A (BPA), 90 μmol/dm3, from water through both Fenton- and photo-Fenton-like reactions using montmorillonite (Mt) and aluminum interlayered pillared clays (Al-PILC) as catalytic supports. The catalysts (Fe2O3/TiO2/Mt and Fe2O3/TiO2/Al-PILC) were evaluated in single-component solutions and in an equimolar mixture. Two Al-PILC were synthesized from a hazardous waste, namely aluminum saline slag, using either the acid (Al-PILCAE) or the alkaline (Al-PILCBE) aluminum extract as precursors. The third Al-PILC was obtained by the conventional method using a commercial aluminum salt (Al-PILCCM). Catalytic supports were impregnated at 10 and 20 wt% titanium. Iron loadings from 1 to 20 wt% were tested for Mt, while only 20 wt% iron was tested for Al-PILC. All catalysts were characterized using several techniques and the results confirmed the formation of TiO2 and Fe2O3. Almost 100 % of TCS and 2,6-DCP were removed by both Fenton-like (240 and 420 min, respectively) and photo-Fenton-like reactions (30 and 90–120 min, respectively) using the Al-PILC based catalyst. The maximum removal for BPA was 80.14 ± 1.93 % after 120 min under photo-Fenton-like conditions using Al-PILCBE. The catalysts synthesized using the four catalytic supports showed good results for the removal of TCS by both processes, while for 2,6-DCP and BPA the best results were obtained using Al-PILCAE and Al-PILCBE as catalytic supports. Finally, a degradation pathway was suggested for every pollutant based on the by-products identified during the reactions by HPLC-MS. The results revealed that the materials used in this work are suitable catalysts for removing emerging pollutants from water by both Fenton- and photo-Fenton-like reactions.
  • PublicationOpen Access
    Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite
    (University of Science and Technology Beijing, 2019) Rakhila, Youness; Elmchaouri, Abdellah; Mestari, Allal; Korili, Sophia A.; Abouri, Meriem; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The aim of this work is to investigate the ability of an adsorbent of a clay mineral composite to remove and recover gold and silver ions from wastewater. The composite was prepared by mixing phosphogypsum (PG), obtained from an industrial waste, and a natural clay mineral. The materials were characterized before and after use in adsorption by several techniques. Batch adsorption experiments were carried out, and the effects of the contact time and the pH and temperature of solution on the removal processes were investigated. The optimum pH for the adsorption was found to be 4. The adsorption of these metal ions reached equilibrium after 2 h of contact. The pseudo-first- and the pseudo-second-order kinetic models, as well as the Freundlich and the Langmuir isotherm equations, were considered to describe the adsorption results. The maximum adsorbed amount of 85 mg·g−1 Ag(I) and 108.3 mg·g−1 Au(III) was found. The recovery of the adsorbed gold and silver ions from the adsorbent was also analyzed. Strong acids appeared to be the best desorption agents to recover gold and silver ions. The use of aqua regia gave regeneration rates close to 95.3% and 94.3% for Ag(I) and Au(III), respectively. Finally, the removal of gold and silver ions from an industrial wastewater was tested in batch experiments, and percentage recoveries of 76.5% and 79.9% for Ag(I) and Au(III), respectively, were obtained. To carry out the industrial application of the proposed methodology, an economic viability study is required.
  • PublicationOpen Access
    Progress in the removal of pharmaceutical compounds from aqueous solution using layered double hydroxides as adsorbents: a review
    (Elsevier, 2020) Santamaría Aquilué, Rafael; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Emerging contaminants and, among them, pharmaceutical compounds, have a significant impact on water ecosystems. Layered Double Hydroxides (LDH), being easy to synthesize and cheap materials, have recently gained attention as adsorbents in aqueous solutions. This work describes the latest research performed in the adsorption capacity of LDH towards both antibiotics and Non-Steroidal Anti-Inflammatory Drugs (NSAID) describing and analyzing the synthesis conditions (Me2+:Me3+ molar ratio, calcination temperature, choice of metals for the memory effect), kinetics and isotherm models used, use of support (more practical in a 3D over a 2D form), temperature effect and several techniques for the recovery of the adsorbents. LDH exhibited great performance and potential as clean adsorbents for these emerging contaminants.
  • PublicationOpen Access
    Synthesis of Cu-Al layered double hydroxides from aluminum saline slags
    (Elsevier, 2023) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Azizi, A.; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of saline slag, a hazardous waste generated during the recycling of aluminum, as aluminum source for the synthesis CuAl layered double hydroxides (LDH) is for the first time reported in this study. Due to the JahnTeller effect, divalent copper–aluminum LDH come usually with impurities and a pure CuAl LDH is not easy to obtain. The effect of synthesis pH has been examined by comparing LDH synthesized at various pH, ranging from 6 to 12 via a co-precipitation method using aluminum obtained from an alkaline extraction of the slag. For comparison purposes, a sample was synthesized at pH = 9 using commercial aluminum Al(NO3)3⋅9H2O instead of extracted aluminum. The effects of the aging time and calcination temperature are also discussed. The LDH and their calcined metal mixed oxide (layered double oxide, LDO) have been analyzed with several characterization techniques: powder X-ray diffraction (PXRD), N2 adsorption at − 196 ◦C, thermogravimetric analysis (TGA), temperature programmed reduction (TPR), scanning electron microscopy (SEM), transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM and EDS). Synthesis pH has been proved not only to have a significant effect on the nature of secondary phases but also on the structure and morphology of the samples.
  • PublicationOpen Access
    Progress and perspectives for the use of pillared clays as adsorbents for organic compounds in aqueous solution
    (De Gruyter, 2022-09-14) Cardona Rodríguez, Yaneth; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    The world is faced with several problems as regards water pollution. This is due to several factors, including the discharge of effluents into the environment with no prior treatment. This wastewater, therefore, contains significant levels of pollutants, including numerous toxic organic contaminants and others that are similarly undesirable. Several studies have attempted to find ways of removing wastewater contaminants using pillared interlayered clays (PILC) as adsorbents. In this work, we present a summary of those studies that have used PILC as adsorbents for the removal of organic compounds from aqueous solutions while simultaneously illustrating their potential for this purpose. A general overview is provided so that the reader can acquire a basic understanding of the PILC and their modified counterparts that have been used, and some of the characteristics that can directly affect their adsorption behavior, especially their textural and surface properties.
  • PublicationOpen Access
    Effect of high pressure on the reducibility and dispersion of the active phase of Fischer-Tropsch catalysts
    (MDPI, 2019) Yunes, Simón; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    The effect of high pressure on the reducibility and dispersion of oxides of Co and Fe supported on -Al2O3, SiO2, and TiO2 has been studied. The catalysts, having a nominal metal content of 10 wt.%, were prepared by incipient wetness impregnation of previously calcined supports. After drying at 60 °C for 6 h and calcination at 500 °C for 4 h, the catalysts were reduced by hydrogen at two pressures, 1 and 25 bar. The metal reduction was studied by temperature-programmed reduction up to 750 °C at the two pressures, and the metal dispersion was measured by CO chemisorption at 25 °C, obtaining values between 1% and 8%. The physicochemical characterization of these materials was completed by means of chemical analysis, X-ray diffraction, N2 adsorption-desorption at -196 °C and scanning electron microscopy. The high pressure lowered the reduction temperature of the metal oxides, improving their reducibility and dispersion. The metal reducibility increased from 42%, in the case of Fe/Al2O3 (1 bar), to 100%, in the case of Fe/TiO2 (25 bar).
  • PublicationOpen Access
    Efficient recovery of aluminum from saline slag wastes
    (Elsevier, 2019) Yoldi Sangüesa, María; Fuentes Ordóñez, Edwin Gustavo; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, PI017 CORRAL
    This work presents the procedure to improve the aluminum extracted from a hazardous waste from the recycling of aluminum, aluminum that could be used in the production of value-added materials, as well as with the generation of non-hazardous waste. The aluminum waste was treated under reflux and stirring with NaOH aqueous solutions taking into account two concentrations (1 and 2 mol/dm3), various times of extraction (1, 2 and 4 h) and 4th consecutive steps of extraction in order to obtain solutions with Al3+. The activation of the waste by milling is also analyzed. After extraction, the solution is filtered to separate an aqueous solution that contain the extracted Al3+ and a residual waste. A maximum of 7.54 g/dm3 of aluminum was extracted in the first step, for a total accumulated of 9.59 g/dm3 of aluminum. The extracted aluminum can be used to synthesize added-value products applied as adsorbents and catalysts. Finally, the residual waste generated was characterized by N2 adsorption at −196 °C, X-ray diffraction, X-ray fluorescence, energy-dispersive X-ray and scanning electron microscopy in order to apply it as in future works adsorbent or catalyst.
  • PublicationOpen Access
    Layered double hydroxides for CO2 adsorption at moderate temperatures: synthesis and amelioration strategies
    (Elsevier, 2023) Santamaría Arana, Leticia; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Curving the CO2 atmospheric levels is one of the challenges of this century, given its direct impact on climate change. Of the several strategies of CO2 capture and storage, sorption-enhanced water–gas shift (SEWGS) process, a combination of CO2 adsorption and the water–gas shift reaction, has been appointed as one of the most promising techniques due to is low energy consumption and high efficiency. SEWGS operating settings at both moderate temperature (200–450 ◦C) and high pressure (more than 10 bar) bring the need to find an adsorbent capable of working at these conditions. Calcined layered double hydroxides (LDH) have been proven to give the best results in this range of pressure/temperatures even though its performance can be greatly improved. Herein, a state-of-art of the research accomplished up until now is presented. Several strategies can be followed to improve the adsorbents performance: the synthesis method, LDH composition, modifications employed to promote their adsorption capacity or how the adsorption conditions can affect their efficiency
  • PublicationOpen Access
    Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon
    (Taylor & Francis, 2019) Gil Bravo, Antonio; Taoufik, Nawal; García Mora, Ana María; Korili, Sophia A.; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias
    Batch sorption experiments were performed to study the adsorption of six emerging pollutants from aqueous solutions using a commercial granular activated carbon as adsorbent. Caffeine, clofibric acid, diclofenac, gallic acid, ibuprofen and salicylic acid were selected as representative contaminants. The activated carbon was characterized by nitrogen adsorption at 77 K, and through the determination of point of zero charge. The effects of several operational parameters, such as pH, initial concentration of organic molecules, mass of adsorbent and contact time, on the sorption behaviour were evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min. The kinetic data were correlated to several adsorption models, and the adsorption mechanism found to follow pseudo-second-order and intraparticle-diffusion models with external mass transfer predominating in the first 15 min of the experiment. The equilibrium adsorption data were analysed using the Freundlich, Langmuir and Toth isotherm equation models. The similar chemical structure and molecular weight of the organic pollutants studied to make the adsorption capacity of the activated carbon used very similar for all the molecules.
  • PublicationOpen Access
    Application of industrial wastes from chemically treated aluminum saline slags as adsorbents
    (American Chemical Society, 2018) Gil Bravo, Antonio; Arrieta Chango, Ekhine; Vicente, Miguel Ángel; Korili, Sophia A.; Institute for Advanced Materials and Mathematics - INAMAT2
    In this study, industrial wastes, which remain after aluminum extraction from saline slags, were used as adsorbents. The aluminum saline slags were treated under reflux with 2 mol/dm3 aqueous solutions of NaOH, H2SO4, and HCl for 2 h. After separation by filtration, aqueous solutions containing the extracted aluminum and residual wastes were obtained. The wastes were characterized by nitrogen adsorption at -196 °C, X-ray diffraction, scanning electron microscopy, and ammonia pulse chemisorption. The chemical treatment reduced the specific surface area, from 84 to 23 m2/g, and the pore volume, from 0.136 to 0.052 cm3/g, of the saline slag and increased the ammonia-adsorption capacity from 2.84 to 5.22 cm3/g, in the case of acid-treated solids. The materials were applied for the removal of Acid Orange 7 and Acid Blue 80 from aqueous solutions, considering both single and binary systems. The results showed interesting differences in the adsorption capacity between the samples. The saline slag treated with HCl rapidly adsorbed all of the dyes present in solution, whereas the other materials retained between 50 and 70% of the molecules present in solution. The amount of Acid Orange 7 removed by the nontreated material and by the material treated with NaOH increased in the presence of Acid Blue 80, which can be considered as a synergistic behavior. The CO2 adsorption of the solids at several temperatures up to 200 °C was also evaluated under dry conditions. The aluminum saline slag presented an adsorption capacity higher than the rest of treated samples, a behavior that can be explained by the specific sites of adsorption and the textural properties of the solids. The isosteric heats of CO2 adsorption, determined from the Clausius-Clapeyron equation, varied between 1.7 and 26.8 kJ/mol. The wastes should be used as adsorbents for the selective removal of organic contaminants in wastewater treatment.