Publication:
Layered double hydroxides for CO2 adsorption at moderate temperatures: synthesis and amelioration strategies

Consultable a partir de

Date

2023

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112656RB-C21/ES/

Abstract

Curving the CO2 atmospheric levels is one of the challenges of this century, given its direct impact on climate change. Of the several strategies of CO2 capture and storage, sorption-enhanced water–gas shift (SEWGS) process, a combination of CO2 adsorption and the water–gas shift reaction, has been appointed as one of the most promising techniques due to is low energy consumption and high efficiency. SEWGS operating settings at both moderate temperature (200–450 ◦C) and high pressure (more than 10 bar) bring the need to find an adsorbent capable of working at these conditions. Calcined layered double hydroxides (LDH) have been proven to give the best results in this range of pressure/temperatures even though its performance can be greatly improved. Herein, a state-of-art of the research accomplished up until now is presented. Several strategies can be followed to improve the adsorbents performance: the synthesis method, LDH composition, modifications employed to promote their adsorption capacity or how the adsorption conditions can affect their efficiency

Keywords

CO2 adsorption, Carbon dioxide, Layered double hydroxides, Sorption enhanced water–gas shift process

Department

Ciencias / Zientziak / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

The authors are grateful for financial support from the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/ 501100011033) through project PID2020-112656RB-C21. LS thanks Open access funding provided by Universidad Pública de Navarra for a post-doctoral Margarita Salas grant, financed by the European Union- Next Generation EU. AG also thanks Banco Santander for funding through the Research Intensification Program.

© 2022 The Author(s). This is an open access article under the CC BY-NC license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.