Person: Cervera Gabalda, Laura María
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Cervera Gabalda
First Name
Laura María
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
0000-0003-1584-7645
person.page.upna
811405
Name
9 results
Search Results
Now showing 1 - 9 of 9
Publication Open Access Magnetically recyclable TiO2/MXene/MnFe2O4 photocatalyst for enhanced peroxymonosulphate-assisted photocatalytic degradation of carbamazepine and ibuprofen under simulated solar light(Elsevier, 2023) Grzegórska, Anna; Ofoegbu, Joseph Chibueze; Cervera Gabalda, Laura María; Gómez Polo, Cristina; Sannino, Diana; Zielinska-Jurek, Anna; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2In this study, a novel TiO2/Ti3C2/MnFe2O4 magnetic photocatalyst with dual properties, enabling (i) improved photocatalytic degradation with PMS activation under simulated solar light and (ii) magnetic separation after the degradation process in an external magnetic field was developed and applied for the efficient photodegradation pharmaceutically active compounds (PhACs) frequently present in wastewater and surface waters worldwide. MXene was used as a Ti precursor for anatase/rutile synthesis and as a co-catalyst in the photodegradation process. Manganese ferrite with ferrimagnetic properties was coupled with the TiO2/Ti3C2 composite to facilitate the magnetic separation after the purification process in an external magnetic field. Moreover, MnFe2O4 was used for PMS activation, producing •SO4- radicals with a strong oxidation ability and higher redox potential of 2.5–3.1 V (vs. NHE) than •OH radicals with a standard oxidation–reduction potential of 2.8 V. The effect of the manganese ferrite content in the composite structure (5 wt% and 20 wt%) on the physicochemical properties and photocatalytic activity of the magnetic photocatalyst was investigated. Furthermore, the most photocatalytic active composite of TiO2/MXene/5%MnFe2O4 was used for peroxymonosulphate-assisted photocatalytic degradation of ibuprofen and carbamazepine. The effect of peroxymonosulphate concentration (0.0625 mM, 0.125 mM, and 0.25 mM) and the synergistic effect of PMS activation on photocatalytic degradation was studied. Based on the obtained results, it was found that TiO2/MXene/5%MnFe2O4/PMS process is an efficient advanced treatment technology for the oxidation of emerging contaminants that are not susceptible to biodegradation. Carbamazepine and ibuprofen were completely degraded within 20 min and 10 min of the PMS-assisted photodegradation process under simulated solar light. The trapping experiments confirmed that •SO4- and •O2- are the main oxidising species involved in the CBZ degradation, while •SO4- and h+ in the IBP degradation. Furthermore, introducing interfering ions of Na+, Ca2+, Mg2+, Cl-, and SO42– in the model seawater did not affect the removal efficiency of both pharmaceuticals. In terms of reusability, the performance of the TiO2/MXene/5%MnFe2O4/PMS photocatalyst was stable after four subsequent cycles of carbamazepine and ibuprofen degradation.Publication Open Access Steering the synthesis of Fe3O4 nanoparticles under sonication by using a fractional factorial design(Elsevier, 2021) Echeverría Morrás, Jesús; Moriones Jiménez, Paula; Garrido Segovia, Julián José; Ugarte Martínez, María Dolores; Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Gómez Polo, Cristina; Pérez de Landazábal Berganzo, José Ignacio; Ciencias; Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaSuperparamagnetic iron oxide nanoparticles (MNPs) have the potential to act as heat sources in magnetic hyperthermia. The key parameter for this application is the specific absorption rate (SAR), which must be as large as possible in order to optimize the hyperthermia treatment. We applied a Plackett-Burman fractional factorial design to investigate the effect of total iron concentration, ammonia concentration, reaction temperature, sonication time and percentage of ethanol in the aqueous media on the properties of iron oxide MNPs. Characterization techniques included total iron content, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, High Resolution Transmission Electron Microscopy, and Dynamic Magnetization. The reaction pathway in the coprecipitation reaction depended on the initial Fe concentration. Samples synthesized from 0.220 mol L−1 Fe yielded magnetite and metastable precipitates of iron oxyhydroxides. An initial solution made up of 0.110 mol L−1 total Fe and either 0.90 or 1.20 mol L−1 NH3(aq) led to the formation of magnetite nanoparticles. Sonication of the reaction media promoted a phase transformation of metastable oxyhydroxides to crystalline magnetite, the development of crystallinity, and the increase of specific absorption rate under dynamic magnetization.Publication Open Access Tailoring the structural and magnetic properties of Co-Zn nanosized ferrites for hyperthermia applications(Elsevier, 2018) Gómez Polo, Cristina; Recarte Callado, Vicente; Cervera Gabalda, Laura María; Beato López, Juan Jesús; López García, Javier; Rodríguez Velamazán, José Alberto; Ugarte Martínez, María Dolores; Mendonça, E. C.; Duque, J. G. S.; Zientziak; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako GobernuaA comparative study of the magnetic properties (magnetic moment, magnetocrystalline anisotropy) and hyperthermia response in Co-Zn spinel nanoparticles is presented. The CoxZn1-xFe2O4 nanoparticles (x = 1, 0.5, 0.4, 0.3, 0.2 and 0.1) were synthesized by co-precipitated method and the morphology and mean crystallite size (around 10 nm) of the nanoparticles were analysed by TEM Microscopy. Regarding the magnetic characterization (SQUID magnetometry), Co-Zn nanoparticles display at room temperature anhysteretic magnetization curves, characteristic of the superparamagnetic behavior. A decrease in the blocking temperature, T-B, with Zn content is experimentally detected that can be ascribed to the reduction in the mean nanoparticle size as x decreases. Furthermore, the reduction in the magnetocrystalline anisotropy with Zn inclusion is confirmed through the analysis of TB versus the mean volume of the nanoparticles and the law of approach to saturation. Maximum magnetization is achieved for x = 0.5 as a result of the cation distribution between octahedral and tetrahedral spinel sites, analysed by neutron diffraction studies. The occurrence of a canted spin arrangement (Yafet-Kittel angle) is introduced to properly fit the magnetic spinel structures. Finally, the heating capacity of these spinel ferrites is analyzed under ac magnetic field (magnetic hyperthermia). Maximum SAR (Specific Absorption Rate) values are achieved for x = 0.5 that should be correlated to the maximum magnetic moment of this composition.Publication Open Access Magnetic-field-assisted photocatalysis of N-TiO2 nanoparticles(IEEE, 2023-09-04) Cervera Gabalda, Laura María; Garayo Urabayen, Eneko; Beato López, Juan Jesús; Pérez de Landazábal Berganzo, José Ignacio; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Nitrogen doped TiO2 nanoparticles were synthesized through solvothermal method employing Ti (IV) butoxide and HNO3 as precursors. Structural and optical characterizations confirm their nanometer nature (sizes around 10 nm) and the band-gap energy values in the UV range (3.2 eV). Nitrogen doping enhances the occurrence of optical Urbach tails extending towards the visible region. Visible photocatalytic performance (degradation of methyl orange) is correlated with maximum values in the magnetic susceptibility linked to a magnetic polarization of the anatase structure via defects (oxygen vacancies). The application of magnetic field provides a positive effect (acceleration in reaction kinetics) within the UV-Vis range.Publication Open Access Tuning the photocatalytic performance through magnetization in Co-Zn ferrite nanoparticles(Elsevier, 2022) Cervera Gabalda, Laura María; Zielinska-Jurek, Anna; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaIn this work, the link between the photocatalytic performance of Co-Zn ferrite nanoparticles and the net magnetic moment is analyzed. CoxZn1-xFe2O4 nanoparticles (0 ≤ x ≤ 1) were synthesized by co-precipitation method and different physicochemical techniques were employed to characterize the samples (X-ray diffraction, Transmission Electron Microscopy (TEM), BET surface area, Diffuse Reflectance Spectroscopy (DRS), Photoluminescence spectroscopy, Z-potential, SQUID magnetometry). Enhanced photocatalytic degradation (maximum degradation ratios of two emerging pollutants, phenol and toluene) are found in those nanoparticles (0.4 ≤ x ≤ 0.6) with optimum magnetic response (i.e. superparamagnetism at room temperature and high saturation magnetization). The magnetization of the nanoparticles turns out to be the determining factor in the optimization of the photocatalytic response, since there is no clear relationship with other physicochemical parameters (i.e. specific surface area, isoelectric point, band gap energy or photoluminescence). These results support the current field of research related to photocatalytic performance enhancement through magnetic field effects.Publication Open Access Fe-C nanoparticles obtained from thermal decomposition employing sugars as reducing agents(Elsevier, 2020) Cervera Gabalda, Laura María; Pérez de Landazábal Berganzo, José Ignacio; Garayo Urabayen, Eneko; Monteserín, María; Larumbe Abuin, Silvia; Martín, F.; Gómez Polo, Cristina; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of the work is to present a comparative analysis (structural and magnetic) of Fe-C nanocomposites obtained by the thermal decomposition of sugars (fructose, glucose and sucrose) employing FeCl3 as Fe3+ precursor. The thermal decomposition was followed through Thermogravimetry (TGA) and Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction, High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. The results indicate the reduction of Fe3+ under the performed thermal treatments and the achievement at high annealing temperatures of Fe-C nanostructures (coexistence of α-Fe and Fe3C nanoparticles surrounded by a carbon matrix). The magnetic characterization performed by dc SQUID magnetometry, shows an antiferromagnetic response in the initial stages of the decomposition process, and a ferromagnetic behavior linked to the Fe-based nanoparticles. The magnetic induction heating was analyzed through the ac hysteresis loops. Moderate Specific Absorption Rate (SAR) is obtained in Fe-C nanoparticles (~ 70 W/gFe), ascribed to the large nanoparticle size. The combination of porous carbon structure and ferromagnetic response of the Fe-C nanoparticles (i.e. local temperature increase under ac magnetic field) enlarge the emerging applications of these carbonaceous nanocomposites.Publication Open Access Iron based nanostructures: synthesis, characterization and environmental applications(2022) Cervera Gabalda, Laura María; Gómez Polo, Cristina; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEn los últimos años, la contaminación ambiental se ha convertido en un tema de preocupación pública. Debido a diferentes actividades, diversos compuestos orgánicos e inorgánicos acaban en el medio ambiente afectando sobre todo a las fuentes de agua potable y a la calidad del aire. Existen numerosos métodos para la eliminación de contaminantes. Entre ellos, destaca el método de adsorción debido a su simplicidad, bajo coste y elevada eficiencia. La estabilidad, porosidad, elevada área superficial, capacidad de transferencia electrónica entre otras propiedades, hacen que los nanomateriales se utilicen ampliamente como eliminación de contaminantes. En particular, las nanoestructuras magnéticas son ampliamente utilizadas como adsorbentes debido a la posibilidad de separarlos del entorno en el que están inmersos empleando un campo magnético externo. Además, está característica mejora la posibilidad de reciclar y reutilizar estos nanomateriales para reducir los costes del proceso. Concretamente, los nanomateriales basados en hierro y carbono se proponen como adsorbentes altamente eficientes debido a la elevada capacidad de adsorción del carbono. Además, la abundancia natural del hierro, su bajo cote, sus propiedades magnéticas y químicas y su baja toxicidad hacen que estos nanomateriales sean muy interesantes para su utilización en el campo de la reparación del daño medioambiental. Por otro lado, los fotocatalizadores también tienen interés en la eliminación de contaminantes. En este contexto, nuevamente, las nanopartículas magnéticas tienen gran interés debido a sus propiedades fisicoquímicas. Concretamente, las ferritas con diferentes cationes se utilizan como fotocatalizadores gracias a la posibilidad de diseñar semiconductores con valores de energía de band-gap reducidos y óptimas propiedades magnéticas y fotocatalíticas. Particularmente, en esta tesis se han analizado ferritas de Co-Zn como fotocatalizadores activos en el visible. En este trabajo, se han sintetizado en primer lugar nanoestructuras de Fe-C utilizando tres procedimientos diferentes teniendo como estrategia común la utilización de azúcar (glucosa, fructosa o sacarosa) como fuente de carbono. El primer procedimiento consiste en preparar una disolución acuosa que contiene una mezcla de sales de hierro (Fe3+) con diferentes azúcares como fuente de carbono. A continuación, la disolución se seca y se calcina a diferentes temperaturas. El segundo procedimiento de síntesis para obtener nanoestructuras de Fe-C está basado en la reducción de nanopartículas de Fe3O4 mediante la descomposición térmica de la fructosa. Finalmente, el calentamiento por inducción magnética se ha utilizado como nuevo método para recubrir con carbono nanopartículas magnéticas de Fe3O4. Las nanoestructuras obtenidas mediante cada uno de los métodos ateriores fueron caracterizadas estructuralmente utilizando diferentes técnicas como el Análisis Termogravimétrico (TGA), Espectroscopia Infrarroja por Transformada de Fourier (FTIR), Difracción de Rayos X (XRD), Microscopía Electrónica, o Espectroscopia Raman. La caracterización magnética de las muestras se ha llevado a cabo mediante magnetometría SQUID. La combinación de la caracterización estructural y magnetica de las muestras ha permitido analizar comparativamente los diferentes métodos de síntesis empleados para obtener nanoestructuras de Fe-C. Una vez se caracterizaron ampliamente las nanoestructuras de Fe-C, se evaluó la capacidad de adsorción de algunas muestras seleccionadas de cada uno de los métodos de síntesis, así como su reutilización. Para ello, se eligieron Cr (VI) y fenol como modelos de contaminantes orgánico e inorgánico, respectivamente. Además, el calentamiento por inducción magnética se estudió como un método alternativo de desorción de fenol y se comparó con un tratamiento térmico convencional. Finalmente, se sintetizaron nanopartículas de CoxZn1-xFe3O4 mediante el método de co-precipitación. Se caracterizaron estructuralmente (Difracción de rayos X, Espectroscopia de Fluorescencia de Rayos X y Microscopia Electrónica de Barrido), ópticamente (Espectroscopia UV-Vis por Reflectancia Difusa (DRS) y Espectroscopia de Fotoluminiscencia) y magnéticamente (magnetometría SQUID). Además, se realizaron mediciones de Espectroscopia de Emisión Óptica con Plasma Acoplado Inductivamente (ICP), área superficial y potencial Zeta para completar la caracterización de las nanopartículas. La actividad fotocatalítica de las ferritas de Co-Zn se evaluó utilizando fenol y tolueno como modelos de contaminantes en medio acuoso y en aire respectivamente.Publication Open Access Magnetic carbon Fe3O4 nanocomposites synthesized via magnetic induction heating(Springer Nature, 2023) Cervera Gabalda, Laura María; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra/Nafarroako Unibertsitate PublikoaMagnetic Induction Heating (MIH) of magnetite nanoparticles is employed as a novel synthesis procedure of carbon based magnetic nanocomposites. Magnetic nanoparticles (Fe3O4) and fructose (1:2 weight ratio) were mechanically mixed and submitted to a RF magnetic field (305 kHz). The heat generated by the nanoparticles leads to the decomposition of the sugar and to the formation of an amorphous carbon matrix. Two sets of nanoparticles, with mean diameter sizes of 20 and 100 nm, are comparatively analysed. Structural (X-ray diffraction, Raman spectroscopy, Transmission Electron Microscopy (TEM)), electrical and magnetic (resistivity, SQUID magnetometry) characterizations confirm the nanoparticle carbon coating through the MIH procedure. The percentage of the carbonaceous fraction is suitably increased controlling the magnetic heating capacity of the magnetic nanoparticles. The procedure enables the synthesis of multifunctional nanocomposites with optimized properties to be applied in different technological fields. Particularly, Cr (VI) removal from aqueous media is presented employing the carbon nanocomposite with 20 nm Fe3O4 nanoparticles.Publication Open Access Magnetic Fe/Fe3C@C nanoadsorbents for efficient Cr (VI) removal(MDPI, 2022) Cervera Gabalda, Laura María; Gómez Polo, Cristina; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2Magnetic carbon nanocomposites (α-Fe/Fe3C@C) synthesized employing fructose and Fe3O4 magnetite nanoparticles as the carbon and iron precursors, respectively, are analyzed and applied for the removal of Cr (VI). Initial citric acid-coated magnetite nanoparticles, obtained through the co-precipitation method, were mixed with fructose (weight ratio 1:2) and thermally treated at different annealing temperatures (Tann = 400, 600, 800, and 1000 ◦C). The thermal decomposition of the carbon matrix and the Fe3O4 reduction was followed by thermogravimetry (TGA) and Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, Raman spectroscopy, SQUID magnetometry, and N2 adsorption–desorption isotherms. A high annealing temperature (Tann = 800 ◦C) leads to optimum magnetic adsorbents (high magnetization enabling the magnetic separation of the adsorbent from the aqueous media and large specific surface area to enhance the pollutant adsorption process). Cr (VI) adsorption tests, performed under weak acid environments (pH = 6) and low pollutant concentrations (1 mg/L), confirm the Cr removal ability and reusability after consecutive adsorption cycles. Physical adsorption (pseudo-first-order kinetics model) and multilayer adsorption (Freundlich isotherm model) characterize the Cr (VI) absorption phenomena and support the enhanced adsorption capability of the synthesized nanostructures.