Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 34
  • PublicationOpen Access
    New regimes to achieve enhanced transmission through subwavelength hole arrays
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we present millimetre- and THz-waves experimental confirmation of enhanced transmission through subwavelength hole arrays with rectangular lattice when the incident electric field is parallel to the short periodicity.
  • PublicationOpen Access
    The beauty of anisotropy in extraordinary transmission fishnet metamaterials
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, we explore both numerically and experimentally, the possibility to obtain positive and negative refraction regimes that depend on the wave polarization, exploiting the strong anisotropy of extraordinary transmission fishnet metamaterials.
  • PublicationOpen Access
    Comportamiento de propagacion electromagnetica en el apilamiento de agujeros sublambda y agujeros propagantes
    (2009) Navarro Cía, Miguel; Beruete Díaz, Miguel; Falcone Lanas, Francisco; Campillo, Igor; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, we provide more insight on the physics underlying the transmission through subwavelength hole arrays metaprism by comparing it with propagating hole arrays prism. We show the critical role that the size of the holes plays in this electromagnetic propagation, changing the effective index of refraction from negative to positive values as the hole diameter increases. This causes negative refraction for the zero-th order emerging beam in the metaprism whereas positive refraction in the non-cut-off holes prism. Experimental results (co- and cross-polar measurements) performed at the V-band of the millimeter waves in the Fresnel zone are well supported by numerical analyses in terms of dispersion diagram, spatial electric field distribution and power flow within the prism along with in the output air zone. As expected, higher order diffracted outgoing beams are recorded for the classical prism but not for the metaprism.
  • PublicationOpen Access
    Analysis of surface-plasmon-like modes under an engineering perspective
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we show how one can exploit equivalent circuits to analyze surface-plasmon-like modes (slit and hole arrays, Sievenpiper mushrooms and coaxial hole arrays) and to propose new designs with outstanding features.
  • PublicationOpen Access
    Lentes metálicas basadas en el fenómeno de transmisión extraordinaria para conseguir índices de refracción negativos
    (2009) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we report plano-concave and bi-concave metamaterial lenses based on the close stack of subwavelegnth hole arrays. Contrary to what is expected from cut-off holes, an engineered array of holes supports Extraordinary Transmission. Moreover, the medium formed when those structures are subwavelength stacked (thus, under metamaterial condition) behaves as a medium with effective negative index of refraction, which allows designing new lenses with properties that were only guessed at not long ago such as perfect imaging, subdiffraction and free-space matching to name a few.
  • PublicationOpen Access
    Polarized left-handed extraordinary optical transmission of subterahertz waves
    (Optical Society of America, 2007) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper we design and measure a metamaterial polarizing device working in the sub-terahertz range. The polarizer is based on a modified version of our previous miniaturized Stacked Hole Array (SHA) structure, an arrangement that combines Extraordinary Optical Transmission (EOT) and Left-Handed Metamaterial (LHM) propagation even under Fresnel illumination. Here, we use a self complementary screen by connecting the holes of an EOT structure. Importantly, EOT remains and simultaneously total reflection is obtained for the orthogonal component. Moreover, by computing the dispersion diagram, we demonstrate that LHM propagation can be achieved for the principal polarization within the stop band of the orthogonal component, which propagates in other bands as a standard forward wave. Finally, we check our conjectures by measuring the transmission and reflection coefficients of screens milled on a low-loss microwave substrate. Measurements have been taken for 1 to 6 stacked wafers and they show clearly that the stack acts as a polarizer with lefthanded characteristic. Our results open the way to design of novel polarization control metamaterials at Terahertz wavelengths.
  • PublicationOpen Access
    Mechanical 144GHz beam steering with all-metallic epsilon-near-zero lens antenna
    (AIP Publishing, 2014) Pacheco-Peña, Víctor; Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    An all-metallic steerable beam antenna composed of an ε-near-zero (ENZ) metamaterial lens is experimentally demonstrated at 144 GHz (λ0 = 2.083 mm). The ENZ lens is realized by an array of narrow hollow rectangular waveguides working just near and above the cut-off of the TE10 mode. The lens focal arc on the xz-plane is initially estimated analytically as well as numerically and compared with experimental results demonstrating good agreement. Next, an open-ended waveguide is placed along the lens focal arc to evaluate the ENZ-lens antenna steerability. A gain scan loss below 3 dB is achieved for angles up to plus/minus 15º.
  • PublicationOpen Access
    Planoconcave lens by negative refraction of stacked subwavelength hole arrays
    (Optical Society of America, 2008) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This work presents the design of a planoconcave parabolic negative index metamaterial lens operating at millimeter wavelengths fabricated by using stacked subwavelength hole arrays. A staircase approximation to the ideal parabola profile has been done by removing step by step one lattice in each dimension of the transversal section. Theory predicts power concentration at the focal point of the parabola when the refractive index equals -1. Both simulation and measurement results exhibit an excellent agreement and an asymmetrical focus has been observed. The possibility to design similar planoconcave devices in the terahertz and optical wavelengths could be a reality in the near future.
  • PublicationOpen Access
    Polarization selection with stacked hole array metamaterial
    (AIP Publishing, 2008) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Polarization rotation or selection appears in materials with optical activity, or those with Faraday effect, or in liquid crystals. In this letter we present a structure, with an analogous response, using stacked extraordinary transmission subwavelength hole arrays modified to be nearly self-complementary. This produces a polarization selector because of the negative index of refraction for one of its linearly polarized eigenwaves. Simulation results and experiments at millimeter wavelengths confirm these features. Applications in miniaturized devices are envisioned as well as the possibility to scale to optical wavelengths.
  • PublicationOpen Access
    Regular and anomalous extraordinary optical transmission at the THz-gap
    (Optical Society of America, 2009) Kuznetsov, Sergei A.; Navarro Cía, Miguel; Kubarev, V. V.; Gelfand, A. V.; Beruete Díaz, Miguel; Campillo, Igor; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper Anomalous Extraordinary Transmission (ET) is reported for s-polarization of low loss doubly periodic subwavelength hole arrays patterned on polypropylene (PP) substrates by conventional contact photolithography at the so-called THz-gap (1-10 THz). The unexpected enhanced transmittance for s-polarization (i.e. without spoof plasmons) was previously numerically demonstrated in subwavelength slits arrays. However, subsequently no experimental work has been devoted to this unexpected Extraordinary Transmission neither in subwavelength slits nor in subwavelength holes. Here, numerical study and experimental results of the Anomalous ET and the symmetric and antisymmetric transmittance modes associated with the already well-known p-polarization ET are shown alongside a systematically analysis of the frequency peaks as a function of hole size for both incident polarizations.