Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 34
  • PublicationOpen Access
    Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms
    (Optical Society of America, 2009) Navarro Cía, Miguel; Beruete Díaz, Miguel; Agrafiotis, Spyros; Falcone Lanas, Francisco; Sorolla Ayza, Mario; Maier, Stefan A.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A complementary split ring resonator (CSRR)-based metallic layer is proposed as a route to mimic surface plasmon polaritons. A numerical analysis of the textured surface is carried out and compared to previous prominent topologies such as metal mesh, slit array, hole array, and Sievenpiper mushroom surfaces, which are studied as well from a transmission line perspective. These well-documented geometries suffer from a narrowband response, alongside, in most cases, metal thickness constraint (usually of the order of λ/4) and non-subwavelength modal size as a result of the large dimensions of the unit cell (one dimensions is at least of the order of λ/2). All of these limitations are overcome by the proposed CSRR-based surface. Besides, a planar waveguide is proposed as a proof of the potential of this CSRR-based metallic layer for spoof surface plasmon polariton guiding. Fundamental aspects aside, the structure under study is easy to manufacture by simple PCB techniques and it is expected to provide good performance within the frequency band from GHz to THz.
  • PublicationOpen Access
    Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism
    (EMW Publishing, 2010) Navarro Cía, Miguel; Beruete Díaz, Miguel; Falcone Lanas, Francisco; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Here we report a prism made of stacked quasi-selfcomplementary extraordinary transmission surfaces which allows simultaneously left- and right-handed propagation within the V-band for vertical and horizontal polarizations, respectively and righthanded propagation within the W-band for both polarizations. The numerical dispersion diagram of the infinite structure and effective indexes of refraction retrieved from S-parameters under normal incidence together with the finite integration time domain simulations predict single negative and double positive birefringence. The unusual type of birefringence single negative and regular double positive birefringence are afterwards demonstrated experimentally at the millimeter-waves (V- and W-bands) by the wedge experiment which lets us check, using a straightforward geometrical method, the refraction of each component. The effective index of refraction is retrieved via the Snell's law and compared to those obtained through the dispersion diagram and the retrieval method from S-parameters computed with the commercial software CST Microwave StudioTM.
  • PublicationOpen Access
    Mid-infrared spectroscopy (MIR) for simultaneous determination of fat and protein content in meat of several animal species
    (Springer, 2017) Lozano Saiz, María; Rodríguez Ulibarri, Pablo; Echeverría Morrás, Jesús; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Beriain Apesteguía, María José; Institute of Smart Cities - ISC; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Institute for Advanced Materials and Mathematics - INAMAT2
    The aim of this research was to study the application of MIR spectroscopy as an alternative to conventional methods to determine fat and protein content. Samples of the main species used to produce meat products were analyzed, showing all of them absorption bands at similar wavenumbers though with different intensity. Correlation analysis of absorption intensities showed that bands around 2925, 2854, and 1746 cm−1 are associated with fat content, whereas bands around 3288, 1657, and 1542 cm−1 are associated with proteins. During the validation process, prediction models of fat and protein content were successfully obtained withR2 0.9173 and 0.7534, respectively. Finally, a good result (R2 =0.8829) was obtained on the estimation of the lipid content when the information at only one wavenumber was used.
  • PublicationOpen Access
    Analysis of surface-plasmon-like modes under an engineering perspective
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we show how one can exploit equivalent circuits to analyze surface-plasmon-like modes (slit and hole arrays, Sievenpiper mushrooms and coaxial hole arrays) and to propose new designs with outstanding features.
  • PublicationOpen Access
    Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission
    (American Institute of Physics, 2011) Beruete Díaz, Miguel; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this letter we present an in-depth circuit analysis of anomalous extraordinary transmission ET through subwavelength slit and hole arrrays loaded by a dielectric slab. We show the key role played by the thickness of the dielectric slab in order to enhance the transmission for TE-polarized waves incident electric field parallel to the slits or to the short in-plane period in hole arrays arranged in rectangular lattice within the cut-off regime of the apertures and to suppress Wood’s anomaly. Analytical and numerical results together with experimental data are presented, showing good agreement among them. This work provides physical insight of the underlying mechanism governing anomalous ET and offers further independent control over orthogonal polarized waves impinging into subwavelength aperture arrays.
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.
  • PublicationOpen Access
    Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial
    (IOP Publishing Ltd, 2010) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a deep numerical as well as experimental study of the anisotropy response of extraordinary transmission metamaterials constructed by stacking subwavelength hole arrays is presented. Two-dimensional (2D) dispersion diagrams for S- and P-polarization were obtained from simulation. From them, it was found that negative refraction can be obtained for the latter case for small angles of incidence. Additionally, it was found that double periodic and dielectric loaded hole arrays are optimal to enlarge the numerical aperture that leads to negative refraction. Several experiments are then presented in the V-band of the millimetre-wave range that show excellent agreement with the numerical calculations. Moreover, the richness of the anisotropic characteristic exhibited by the stacked hole array structure allows for designing structures with complex electromagnetic response other than solely negative refraction. Thus, the results presented here could be taken as a novel route to achieve exotic behaviour, such as negative refraction at other frequency ranges, like terahertz or the visible.
  • PublicationOpen Access
    Polarized left-handed extraordinary optical transmission of subterahertz waves
    (Optical Society of America, 2007) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper we design and measure a metamaterial polarizing device working in the sub-terahertz range. The polarizer is based on a modified version of our previous miniaturized Stacked Hole Array (SHA) structure, an arrangement that combines Extraordinary Optical Transmission (EOT) and Left-Handed Metamaterial (LHM) propagation even under Fresnel illumination. Here, we use a self complementary screen by connecting the holes of an EOT structure. Importantly, EOT remains and simultaneously total reflection is obtained for the orthogonal component. Moreover, by computing the dispersion diagram, we demonstrate that LHM propagation can be achieved for the principal polarization within the stop band of the orthogonal component, which propagates in other bands as a standard forward wave. Finally, we check our conjectures by measuring the transmission and reflection coefficients of screens milled on a low-loss microwave substrate. Measurements have been taken for 1 to 6 stacked wafers and they show clearly that the stack acts as a polarizer with lefthanded characteristic. Our results open the way to design of novel polarization control metamaterials at Terahertz wavelengths.
  • PublicationOpen Access
    Negative refraction through an extraordinary transmission left-handed metamaterial slab
    (American Physical Society, 2009) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work we present numerical and experimental results of negative refraction through a negative index metamaterial based on miniaturized extraordinary transmission stacked subwavelength hole arrays, also known as stacked fishnet structures, working in the millimeter wave range. Analytical transmittance as a function of frequency and tangential momentum shows the conditions under which negative refraction is expected. Due to the role of the gap-surface-plasmon-polariton-like mode that gives rise to the resonant magnetic response of this structure, strong dispersion with the angle of incidence is expected. Experimental results using a quasioptical bench in the millimeter wave band demonstrate negative refraction and, besides, reasonable agreement with the simulation results is obtained. A discussion based on leaky waves serves to qualitatively explain the main features. The presented results may find application in the design of new lenses and devices both in the microwave, terahertz, and optical ranges.
  • PublicationOpen Access
    Lentes metálicas basadas en el fenómeno de transmisión extraordinaria para conseguir índices de refracción negativos
    (2009) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we report plano-concave and bi-concave metamaterial lenses based on the close stack of subwavelegnth hole arrays. Contrary to what is expected from cut-off holes, an engineered array of holes supports Extraordinary Transmission. Moreover, the medium formed when those structures are subwavelength stacked (thus, under metamaterial condition) behaves as a medium with effective negative index of refraction, which allows designing new lenses with properties that were only guessed at not long ago such as perfect imaging, subdiffraction and free-space matching to name a few.