Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 2 of 2
  • PublicationOpen Access
    Regular and anomalous extraordinary optical transmission at the THz-gap
    (Optical Society of America, 2009) Kuznetsov, Sergei A.; Navarro Cía, Miguel; Kubarev, V. V.; Gelfand, A. V.; Beruete Díaz, Miguel; Campillo, Igor; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper Anomalous Extraordinary Transmission (ET) is reported for s-polarization of low loss doubly periodic subwavelength hole arrays patterned on polypropylene (PP) substrates by conventional contact photolithography at the so-called THz-gap (1-10 THz). The unexpected enhanced transmittance for s-polarization (i.e. without spoof plasmons) was previously numerically demonstrated in subwavelength slits arrays. However, subsequently no experimental work has been devoted to this unexpected Extraordinary Transmission neither in subwavelength slits nor in subwavelength holes. Here, numerical study and experimental results of the Anomalous ET and the symmetric and antisymmetric transmittance modes associated with the already well-known p-polarization ET are shown alongside a systematically analysis of the frequency peaks as a function of hole size for both incident polarizations.
  • PublicationOpen Access
    Polypropylene-substrate-based SRR- and CSRR-metasurfaces for submillimeter waves
    (Optical Society of America, 2008) Aznabet, Mariem; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Gelfand, A. V.; Fedorinina, N. I.; Goncharov, Yu. G.; Beruete Díaz, Miguel; El Mrabet, O.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper it is presented the fabrication of low loss millimeter wave metamaterials based on patterning on polypropylene substrates by conventional contact photolitography. We study numerically and experimentally the transmission and reflection properties of two dimensional arrays of split ring resonators (SRRs), or metasurfaces, and their complementary structure (CSRRs) for co- and cross-polarization excitations up to submillimeter frequencies under normal incidence conditions. The obtained results suggest the possibility of scaling them at terahertz frequencies based on this substrate where other lossy substrates degrade the resonators quality. Left-handed metamaterials derived from these SRRs and CSRRs metasurfaces could be feasible.