Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Polarized left-handed extraordinary optical transmission of subterahertz waves
    (Optical Society of America, 2007) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper we design and measure a metamaterial polarizing device working in the sub-terahertz range. The polarizer is based on a modified version of our previous miniaturized Stacked Hole Array (SHA) structure, an arrangement that combines Extraordinary Optical Transmission (EOT) and Left-Handed Metamaterial (LHM) propagation even under Fresnel illumination. Here, we use a self complementary screen by connecting the holes of an EOT structure. Importantly, EOT remains and simultaneously total reflection is obtained for the orthogonal component. Moreover, by computing the dispersion diagram, we demonstrate that LHM propagation can be achieved for the principal polarization within the stop band of the orthogonal component, which propagates in other bands as a standard forward wave. Finally, we check our conjectures by measuring the transmission and reflection coefficients of screens milled on a low-loss microwave substrate. Measurements have been taken for 1 to 6 stacked wafers and they show clearly that the stack acts as a polarizer with lefthanded characteristic. Our results open the way to design of novel polarization control metamaterials at Terahertz wavelengths.
  • PublicationOpen Access
    Electroinductive waves role in left-handed stacked complementary split rings resonators
    (Optical Society of America, 2009) Beruete Díaz, Miguel; Aznabet, Mariem; Navarro Cía, Miguel; El Mrabet, O.; Falcone Lanas, Francisco; Aknin, N.; Essaaidi, M.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this letter it is presented a Left-Handed Metamaterial design route based upon stacked arrays of screens made of complementary split rings resonators under normal incidence in the microwave regime. Computation of the dispersion diagram highlights the possibility to obtain backward waves provided the longitudinal lattice is small enough. The experimental results are in good agreement with the computed ones. The physics underlying the Left-Handed behavior is found to rely on electroinductive waves, playing the mutual capacitive coupling the major role to explain the phenomenon. Our route to Left-Handed metamaterial introduced in this paper based on stacking CSRRs screens can be scaled to millimeter and terahertz for future applications.
  • PublicationOpen Access
    Extraordinary transmission and left-handed propagation in miniaturized stacks of doubly periodic subwavelength hole arrays
    (Optical Society of America, 2007) Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Falcone Lanas, Francisco; Campillo, Igor; Lomakin, Vitaliy; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metallic plates embedded between dielectric slabs and perforated by rectangular arrays of subwavelength holes with a dense periodicity in one of the directions support extraordinary transmission (ET) phenomena, viz. strong peaks in the transmittance frequency dependence. Stacks of such perforated plates support ET phenomena with propagation along the stack axis that is characterized by the left handed behavior. The incorporation of the dielectric materials and dense periodicity allows significantly reducing the illuminated area of the perforated plate required experimentally to observe the ET phenomena as compared to the areas required in the case of free standing rectangular hole arrays. This facilitates the experimental investigation of ET under excitation in the Fresnel zone of Gaussian beams.
  • PublicationOpen Access
    Negative refraction through an extraordinary transmission left-handed metamaterial slab
    (American Physical Society, 2009) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work we present numerical and experimental results of negative refraction through a negative index metamaterial based on miniaturized extraordinary transmission stacked subwavelength hole arrays, also known as stacked fishnet structures, working in the millimeter wave range. Analytical transmittance as a function of frequency and tangential momentum shows the conditions under which negative refraction is expected. Due to the role of the gap-surface-plasmon-polariton-like mode that gives rise to the resonant magnetic response of this structure, strong dispersion with the angle of incidence is expected. Experimental results using a quasioptical bench in the millimeter wave band demonstrate negative refraction and, besides, reasonable agreement with the simulation results is obtained. A discussion based on leaky waves serves to qualitatively explain the main features. The presented results may find application in the design of new lenses and devices both in the microwave, terahertz, and optical ranges.
  • PublicationOpen Access
    Left-handed extraordinary optical transmission through a photonic crystal of subwavelength hole arrays
    (Optical Society of America, 2006) Beruete Díaz, Miguel; Sorolla Ayza, Mario; Campillo, Igor; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as photonic band-gap, extraordinary optical transmission and left-handed propagation. Up to now, relations of photonic crystals and negative refraction have been shown as well as of photonic crystals and sub-wavelength hole arrays. Here we report a left-handed metamaterial engineered by a combination of sub-wavelength hole array plates periodically stacked to form a photonic crystal structure. It is shown the possibility of fine-tuning the metamaterial in order to permit extraordinary optical transmission and left-handed behaviour. Our work demonstrates the feasibility of engineering left-handed metamaterials by just drilling holes in metallic plates and brings together single structure photonic crystals, extraordinary optical transmission and left-handed behaviour.