Sorolla Ayza, Mario

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Sorolla Ayza

First Name

Mario

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 19
  • PublicationOpen Access
    Low profile THz periodic leaky-wave antenna
    (IEEE, 2014) Beaskoetxea Gartzia, Unai; Beruete Díaz, Miguel; Rodríguez Ulibarri, Pablo; Etayo Salinas, David; Sorolla Ayza, Mario; Navarro Cía, Miguel; Zehar, Mokhtar; Blary, Karine; Chahadih, Abdallah; Han, Xiang-Lei; Akalin, Tahsin; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, a 0.566THz flat leaky-wave antenna, consisting of a central λ0/2 slot surrounded by straight parallel wedge corrugations, is numerically and experimentally analyzed. Simulations show a moderately high gain and no significant differences when compared with a typical square corrugation profile. Numerical comparison is also made for the designed and manufactured antennas. High transmission enhancement in the corrugated case is obtained, compared to that given by a single central slot with no grooves. This kind of antennas finds several applications in different frequency ranges, including the nowadays high-interest range of the THz.
  • PublicationOpen Access
    Electromagnetic response of extraordinary transmission plates inspired on Babinet’s principle
    (InTech, 2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementariness-based SHAs: Babinet’s principle, equivalent circuit analysis, retrieved constitutive parameters, etc. Afterwards, we embark on the numerical analysis of stacked self-complementariness-based perforated plates. It is shown the potential of having a birefringent artificial medium behaving like negative and positive effective refractive index for the vertical and horizontal polarization, respectively. All these findings are experimentally demonstrated at millimetre-waves.
  • PublicationOpen Access
    The beauty of anisotropy in extraordinary transmission fishnet metamaterials
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, we explore both numerically and experimentally, the possibility to obtain positive and negative refraction regimes that depend on the wave polarization, exploiting the strong anisotropy of extraordinary transmission fishnet metamaterials.
  • PublicationOpen Access
    Circuit approach to the minimal configuration of terahertz anomalous extraordinary transmission
    (American Institute of Physics, 2011) Beruete Díaz, Miguel; Navarro Cía, Miguel; Kuznetsov, Sergei A.; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this letter we present an in-depth circuit analysis of anomalous extraordinary transmission ET through subwavelength slit and hole arrrays loaded by a dielectric slab. We show the key role played by the thickness of the dielectric slab in order to enhance the transmission for TE-polarized waves incident electric field parallel to the slits or to the short in-plane period in hole arrays arranged in rectangular lattice within the cut-off regime of the apertures and to suppress Wood’s anomaly. Analytical and numerical results together with experimental data are presented, showing good agreement among them. This work provides physical insight of the underlying mechanism governing anomalous ET and offers further independent control over orthogonal polarized waves impinging into subwavelength aperture arrays.
  • PublicationOpen Access
    Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle
    (IEEE, 2015) Torres Landívar, Víctor; Orazbayev, Bakhtiyar; Pacheco-Peña, Víctor; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The performance of an epsilon-near zero (ENZ) plano-concave lens is experimentally demonstrated and verified at the D-band of the millimeter-waves. The lens is comprised of an array of narrow metallic waveguides near cut-off frequency, which effectively behaves as an epsilon-near-zero medium at 144 GHz. A good matching with free space is achieved by exploiting the phenomenon of energy squeezing and a clear focus with a transmission enhancement of 15.9 dB is measured. The lens shows good radiation properties with a directivity of 17.6 dBi and low cross-polar components of -34 dB. All results are supported by numerical simulations.
  • PublicationOpen Access
    A slow light fishnet-like absorber in the millimeter-wave range
    (EMW Publishing, 2011) Navarro Cía, Miguel; Torres Landívar, Víctor; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel route to achieve a narrowband free-space electromagnetic absorber in any range of the spectrum based on stacked subwavelength hole arrays is proposed. The absorption is obtained by means of a slow light mode inside a fishnet-like engineered structure and exploiting the unavoidable misalignments and bucklings of the free-standing stack. An incoming pulse becomes permanently trapped in the structure due to the near zero group velocity which causes an enhancement of the radiation-structure interaction that leads to a huge increment of losses arising from the finite conductivity of the metal as well as arrangement tolerances. This approach is studied not only by simulation but also experimentally under normal incidence at millimeter wavelengths. Moreover, a basic grasp about the angular dependence of the structure is given by analyzing the 2D dispersion diagram. It shows that this scheme may also display high absorption under oblique incidence for s-polarization (or TE-polarization), whereas p-polarization (TM-polarization) would degrade its performance.
  • PublicationOpen Access
    Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial
    (IOP Publishing Ltd, 2010) Beruete Díaz, Miguel; Navarro Cía, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a deep numerical as well as experimental study of the anisotropy response of extraordinary transmission metamaterials constructed by stacking subwavelength hole arrays is presented. Two-dimensional (2D) dispersion diagrams for S- and P-polarization were obtained from simulation. From them, it was found that negative refraction can be obtained for the latter case for small angles of incidence. Additionally, it was found that double periodic and dielectric loaded hole arrays are optimal to enlarge the numerical aperture that leads to negative refraction. Several experiments are then presented in the V-band of the millimetre-wave range that show excellent agreement with the numerical calculations. Moreover, the richness of the anisotropic characteristic exhibited by the stacked hole array structure allows for designing structures with complex electromagnetic response other than solely negative refraction. Thus, the results presented here could be taken as a novel route to achieve exotic behaviour, such as negative refraction at other frequency ranges, like terahertz or the visible.
  • PublicationOpen Access
    New regimes to achieve enhanced transmission through subwavelength hole arrays
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we present millimetre- and THz-waves experimental confirmation of enhanced transmission through subwavelength hole arrays with rectangular lattice when the incident electric field is parallel to the short periodicity.
  • PublicationOpen Access
    All-metallic ε-near-zero (ENZ) lens based on ultra-narrow hollow rectangular waveguides: experimental results
    (IEEE, 2014) Orazbayev, Bakhtiyar; Torres Landívar, Víctor; Pacheco-Peña, Víctor; Falcone Lanas, Francisco; Teniente Vallinas, Jorge; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Navarro Cía, Miguel; Engheta, Nader; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Here we perform numerical and experimental investigation of plano-concave all-metallic ε-near-zero (ENZ) lens with operational frequency f = 144 GHz. The ENZ lens is achieved by stacking an array of narrow hollow rectangular waveguides working near cut-off frequency. Focusing and radiation properties are numerically analyzed and measured. The enhancement of 5.61 dB and directivity of 17.6 dBi are shown. Good agreement between experimental and numerical results is demonstrated.
  • PublicationOpen Access
    Analysis of surface-plasmon-like modes under an engineering perspective
    (2011) Navarro Cía, Miguel; Beruete Díaz, Miguel; Sorolla Ayza, Mario; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this communication we show how one can exploit equivalent circuits to analyze surface-plasmon-like modes (slit and hole arrays, Sievenpiper mushrooms and coaxial hole arrays) and to propose new designs with outstanding features.