Lasa Uzcudun, Íñigo
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Lasa Uzcudun
First Name
Íñigo
person.page.departamento
Ciencias de la Salud
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
76 results
Search Results
Now showing 1 - 10 of 76
Publication Open Access Conditional mutation of an essential putative glycoprotease eliminates autolysis in Staphylococcus aureus(American Society for Microbiology, 2007) Zheng, L.; Yu, C.; Bayles, K.; Lasa Uzcudun, Íñigo; Ji, Y.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaOur previous studies demonstrated that a putative Staphylococcus aureus glycoprotease (Gcp) is essential for bacterial survival, indicating that Gcp may be a novel target for developing antibacterial agents. However, the biological function of Gcp is unclear. In order to elucidate the reason that Gcp is required for growth, we examined the role of Gcp in bacterial autolysis, which is an important biological process for bacterial growth. Using both a spacp-regulated gcp expression strain and a TetR-regulated gcp antisense expression strain, we found that the down-regulation of gcp expression can effectively inhibit Triton X-100-induced lysis, eliminate penicillin- and vancomycin-caused cell lysis, and dramatically increase tolerance to hydrolases. Moreover, we determined whether resistance to lysis is due to a defect in murein hydrolase activity by using a zymogram analysis. The results showed that the cell lysate of a down-regulated gcp expression mutant displayed several bands of decreased murein hydrolytic activity. Furthermore, we explored the potential mechanism of Gcp's involvement in autolysis and demonstrated that Gcp may function independently from several key autolysins (Atl, LytM, and LytN) and regulators (ArlRS, Mgr/Rat, and CidA). Taken together, the above results indicate that the essential Gcp is involved in the modification of substrates of murein hydrolases as well as in the regulation of expression and/or activity of some murein hydrolases, which, in turn, may play important roles in bacterial viability.Publication Open Access Regulation of gene expression by non-phosphorylated response regulators(Institut d'Estudis Catalans, 2021) Gómez Arrebola, Carmen; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun ZientziakTwo-component systems (TCSs) are a prominent sensory system in bacteria. A prototypical TCS comprises a membrane-bound sensor histidine kinase (HK) responsible for sensing the signal and a cytoplasmic response regulator (RR) that controls target gene expression. Signal binding activates a phosphotransfer cascade from the HK to the RR. As a result, the phosphorylated RR undergoes a conformational change that leads to activation of the response. Growing experimental evidence indicates that unphosphorylated RRs may also have regulatory functions, and thus, the classical view that the RR is only active when it is phosphorylated needs to be revisited. In this review, we highlight the most recent findings showing that RRs in the non-phosphorylated state control critical bacterial processes that range from secretion of factors to the host, antibiotic resistance, iron transport, stress response, and cell-wall metabolism to biofilm development.Publication Open Access A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria(Oxford University Press, 2013) Quiles Puchalt, Nuria; Tormo Más, María Ángeles; Campoy Sánchez, Susana; Toledo Arana, Alejandro; Monedero, Vicente; Lasa Uzcudun, Íñigo; Novick, Richard P.; Christie, Gail E.; Penadés, José R.; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the ter S gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.Publication Open Access Genomics of Staphylococcus aureus and Staphylococcus epidermidis from periprosthetic joint infections and correlation to clinical outcome(American Society for Microbiology, 2022) Trobos, Margarita; Firdaus, Rininta; Malchau, Karin Svensson; Tillander, Jonatan; Arnellos, Dimitrios; Rolfson, Ola; Thomsen, Peter; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun ZientziakThe approach of sequencing or genotyping to characterize the pathogenic potential of staphylococci from orthopedic device-related infection (ODRI) has been applied in recent studies. These studies described the genomic carriage of virulence in clinical strains and compared it with those in commensal strains. Only a few studies have directly correlated genomic profiles to patient outcome and phenotypic virulence properties in periprosthetic joint infections (PJIs). We investigated the association between genomic variations and virulence-associated phenotypes (biofilm-forming ability and antimicrobial resistance) in 111 staphylococcal strains isolated from patients with PJI and the infection outcome (resolved/unresolved). The presence of a strong biofilm phenotype in Staphylococcus aureus and an antibiotic-resistant phenotype in Staphylococcus epidermidis were both associated with treatment failure of PJI. In S. epidermidis, multidrug resistance (MDR) and resistance to rifampicin were associated with unresolved infection. Sequence type 45 (ST45) and ST2 were particularly enriched in S. aureus and S. epidermidis, respectively. S. epidermidis ST2 caused the majority of relapses and was associated with MDR and strong biofilm production, whereas ST215 correlated with MDR and non/weak biofilm production. S. aureus agr II correlated with resolved infection, while S. epidermidis agr I was associated with strong biofilm production and agr III with non/weak production. Collectively, our results highlight the importance of careful genomic and phenotypic characterization to anticipate the probability of the strain causing treatment failure in PJI. Due to the high rate of resistant S. epidermidis strains identified, this study provides evidence that the current recommended treatment of rifampicin and a fluoroquinolone should not be administered without knowledge of the resistance pattern.Publication Open Access Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor(Public Library of Science, 2012) Valle Turrillas, Jaione; Latasa Osta, Cristina; Gil Puig, Carmen; Toledo Arana, Alejandro; Solano Goñi, Cristina; Penadés, José R.; Lasa Uzcudun, Íñigo; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilmassociated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections.Publication Open Access Experimental polymorphism survey in intergenic regions of the icaADBCR locus in Staphylococcus aureus isolates from periprosthetic joint infections(MDPI, 2022) Morales Laverde, Liliana Andrea; Echeverz Sarasúa, Maite; Trobos, Margarita; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun ZientziakStaphylococcus aureus is a leading cause of prosthetic joint infections (PJI) characterized by bacterial biofilm formation and recalcitrance to immune-mediated clearance and antibiotics. The molecular events behind PJI infection are yet to be unraveled. In this sense, identification of polymorphisms in bacterial genomes may help to establish associations between sequence variants and the ability of S. aureus to cause PJI. Here, we report an experimental nucleotide-level survey specifically aimed at the intergenic regions (IGRs) of the icaADBCR locus, which is responsible for the synthesis of the biofilm exopolysaccharide PIA/PNAG, in a collection of strains sampled from PJI and wounds. IGRs of the icaADBCR locus were highly conserved and no PJI-specific SNPs were found. Moreover, polymorphisms in these IGRs did not significantly affect transcription of the icaADBC operon under in vitro laboratory conditions. In contrast, an SNP within the icaR coding region, resulting in a V176E change in the transcriptional repressor IcaR, led to a significant increase in icaADBC operon transcription and PIA/PNAG production and a reduction in S. aureus virulence in a Galleria mellonella infection model. In conclusion, SNPs in icaADBCR IGRs of S. aureus isolates from PJI are not associated with icaADBC expression, PIA/PNAG production and adaptation to PJI.Publication Open Access Base pairing interaction between 5′- and 3′-UTRs controls icaR mRNA translation in Staphylococcus aureus(Public Library of Science, 2013) Ruiz de los Mozos Aliaga, Igor; Vergara Irigaray, Marta; Segura, Víctor; Villanueva San Martín, Maite; Bitarte Manzanal, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M.; Fechter, Pierre; Romby, Pascale; Valle Turrillas, Jaione; Solano Goñi, Cristina; Lasa Uzcudun, Íñigo; Toledo Arana, Alejandro; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaThe presence of regulatory sequences in the 39 untranslated region (39-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 39-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 39-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 39-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 39-UTRs may play in controlling mRNA expression. We showed that base pairing between the 39- UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 39-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 39-UTR with the 59-UTR of the same mRNA.Publication Open Access Structural mechanism for modulation of functional amyloid and biofilm formation by Staphylococcal Bap protein switch(EMBO Press, 2021) Ma, Junfeng; Cheng, Xiang; Xu, Zhonghe; Zhang, Yikan; Valle Turrillas, Jaione; Fan, Xianyang; Lasa Uzcudun, Íñigo; Ciencias de la Salud; Osasun ZientziakThe Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation-prone region of Staphylococcus aureus Bap which adopts a dumbbell-shaped fold. The middle module (MM) connecting the N-terminal and C-terminal lobes consists of a tandem of novel double-Ca2+-binding motifs involved in cooperative interaction networks, which undergoes Ca2+-dependent order–disorder conformational switches. The N-terminal lobe is sufficient to mediate amyloid aggregation through liquid–liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti-biofilm drug design.Publication Open Access Characterization of the common genetic variation in the spanish population of Navarre(MDPI, 2024) Maíllo Ruiz de Infante, Alberto; Huergo, Estefanía; Apellániz Ruiz, María Valvanera; Urrutia Lafuente, Edurne; Miranda, María; Salgado Garrido, Josefa; Pasalodos Sánchez, Sara; Delgado-Mora, Luna; Teijido Hermida, Óscar; Goicoechea, Ibai; Carmona, Rosario; Pérez-Florido, Javier; Aquino, Virginia; López-López, Daniel; Peña-Chilet, María; Beltrán, Sergi; Dopazo, Joaquín; Lasa Uzcudun, Íñigo; Beloqui, Juan José; NAGEN-Scheme; Alonso Sánchez, Ángel Miguel; Gómez-Cabrero, David; Ciencias de la Salud; Osasun ZientziakLarge-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants.Publication Open Access Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids(Nature Research, 2020) Matilla Cuenca, Leticia; Gil Puig, Carmen; Cuesta Ferre, Sergio; Rapún Araiz, Beatriz; Mira, Alex; Lasa Uzcudun, Íñigo; Valle Turrillas, Jaione; Ziemité, Miglé; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua, PI011 KILL-BACTThe opportunistic pathogen Staphylococcus aureus is responsible for causing infections related to indwelling medical devices, where this pathogen is able to attach and form biofilms. The intrinsic properties given by the self-produced extracellular biofilm matrix confer high resistance to antibiotics, triggering infections difficult to treat. Therefore, novel antibiofilm strategies targeting matrix components are urgently needed. The biofilm associated protein, Bap, expressed by staphylococcal species adopts functional amyloid-like structures as scaffolds of the biofilm matrix. In this work we have focused on identifying agents targeting Bap-related amyloid-like aggregates as a strategy to combat S. aureus biofilm-related infections. We identified that the flavonoids, quercetin, myricetin and scutellarein specifically inhibited Bap-mediated biofilm formation of S. aureus and other staphylococcal species. By using in vitro aggregation assays and the cell-based methodology for generation of amyloid aggregates based on the Curli-Dependent Amyloid Generator system (C-DAG), we demonstrated that these polyphenols prevented the assembly of Bap-related amyloid-like structures. Finally, using an in vivo catheter infection model, we showed that quercetin and myricetin significantly reduced catheter colonization by S. aureus. These results support the use of polyphenols as anti-amyloids molecules that can be used to treat biofilm-related infections.