Paternain Dallo, Daniel

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Paternain Dallo

First Name

Daniel

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 25
  • PublicationOpen Access
    A study of different families of fusion functions for combining classifiers in the one-vs-one strategy
    (Springer, 2018) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Jurío Munárriz, Aránzazu; Bustince Sola, Humberto; Galar Idoate, Mikel; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this work we study the usage of different families of fusion functions for combining classifiers in a multiple classifier system of One-vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal with multi-class classification problems, where the original multi-class problem is divided into as many problems as pair of classes. In a multiple classifier system, classifiers coming from different paradigms such as support vector machines, rule induction algorithms or decision trees are combined. In the literature, several works have addressed the usage of classifier selection methods for these kinds of systems, where the best classifier for each pair of classes is selected. In this work, we look at the problem from a different perspective aiming at analyzing the behavior of different families of fusion functions to combine the classifiers. In fact, a multiple classifier system of OVO classifiers can be seen as a multi-expert decision making problem. In this context, for the fusion functions depending on weights or fuzzy measures, we propose to obtain these parameters from data. Backed-up by a thorough experimental analysis we show that the fusion function to be considered is a key factor in the system. Moreover, those based on weights or fuzzy measures can allow one to better model the aggregation problem.
  • PublicationOpen Access
    Using the Choquet integral in the fuzzy reasoning method of fuzzy rule-based classification systems
    (MDPI, 2013) Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Automática y Computación; Automatika eta Konputazioa
    In this paper we present a new fuzzy reasoning method in which the Choquet integral is used as aggregation function. In this manner, we can take into account the interaction among the rules of the system. For this reason, we consider several fuzzy measures, since it is a key point on the subsequent success of the Choquet integral, and we apply the new method with the same fuzzy measure for all the classes. However, the relationship among the set of rules of each class can be different and therefore the best fuzzy measure can change depending on the class. Consequently, we propose a learning method by means of a genetic algorithm in which the most suitable fuzzy measure for each class is computed. From the obtained results it is shown that our new proposal allows the performance of the classical fuzzy reasoning methods of the winning rule and additive combination to be enhanced whenever the fuzzy measure is appropriate for the tackled problem.
  • PublicationOpen Access
    The interval-valued Choquet integral based on admissible permutations
    (IEEE, 2018) Paternain Dallo, Daniel; Miguel Turullols, Laura de; Ochoa Lezaun, Gustavo; Lizasoain Iriso, María Inmaculada; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Aggregation or fusion of interval data is not a trivial task, since the necessity of arranging data arises in many aggregation functions, such as OWA operators or the Choquet integral. Some arranging procedures have been given to solve this problem, but they need certain parameters to be set. In order to solve this problem, in this work we propose the concept of an admissible permutation of intervals. Based on this concept, which avoids any parameter selection, we propose a new approach for the interval-valued Choquet integral that takes into account every possible permutation fitting to the considered ordinal structure of data. Finally, a consensus among all the permutations is constructed.
  • PublicationOpen Access
    Nested formulation paradigms for induced ordered weighted averaging aggregation for decision‐making and evaluation
    (Wiley, 2019) Zhu, Chen; Jin, LeSheng; Mesiar, Radko; Yager, Ronald R.; Paternain Dallo, Daniel; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Existing extensions to Yager's ordered weighted aver-aging (OWA) operators enlarge the application rangeand to encompass more principles and properties relatedto OWA aggregation. However, these extensions do notprovide a strict and convenient way to model evaluationscenarios with complex or grouped preferences. Basedon earlier studies and recent evolutionary changes inOWA operators, we propose formulation paradigms forinduced OWA aggregation and a related weight functionwith self‐contained properties that make it possibleto model such complex preference‐involved evaluationproblems in a systematic way. The new formulationshave some recursive forms that provide more waysto apply OWA aggregation and deserve further studyfrom a mathematical perspective. In addition, the newproposal generalizes almost all of the well‐knownextensions to the original OWA operators. We providean example showing the representative use of suchparadigms in decision‐making and evaluation problems.
  • PublicationOpen Access
    Extensions of fuzzy sets in image processing: an overview
    (EUSFLAT, 2011) Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Galar Idoate, Mikel; Jurío Munárriz, Aránzazu; López Molina, Carlos; Paternain Dallo, Daniel; Sanz Delgado, José Antonio; Couto, Pedro; Melo-Pinto, Pedro; Automática y Computación; Automatika eta Konputazioa
    This work presents a valuable review for the interested reader of the recent Works using extensions of fuzzy sets in image processing. The chapter is divided as follows: first we recall the basics of the extensions of fuzzy sets, i.e. Type 2 fuzzy sets, interval-valued fuzzy sets and Atanassov’s intuitionistic fuzzy sets. In sequent sections we review the methods proposed for noise removal (sections 3), image enhancement (section 4), edge detection (section 5) and segmentation (section 6). There exist other image segmentation tasks such as video de-interlacing, stereo matching or object representation that are not described in this work.
  • PublicationOpen Access
    A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models
    (Elsevier, 2015) Galar Idoate, Mikel; Derrac, Joaquín; Peralta, Daniel; Triguero, Isaac; Paternain Dallo, Daniel; López Molina, Carlos; García, Salvador; Benítez, José Manuel; Pagola Barrio, Miguel; Barrenechea Tartas, Edurne; Bustince Sola, Humberto; Herrera, Francisco; Automática y Computación; Automatika eta Konputazioa
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.
  • PublicationEmbargo
    Some characterizations of lattice OWA operators
    (World Scientific Publishing Company, 2017) Miguel Turullols, Laura de; Paternain Dallo, Daniel; Lizasoain Iriso, María Inmaculada; Ochoa Lezaun, Gustavo; Bustince Sola, Humberto; Automática y Computación; Automatika eta Konputazioa; Matemáticas; Matematika
    Ordered Weighted Averaging (OWA) operators are a family of aggregation which fusion data. If the data are real numbers, then OWA operators can be characterized either as an special kind of Choquet integral or simply as an arithmetic mean of the given values previously ordered. This paper analyzes the possible generalizations of these characterizations when OWA operators are de ned on a complete lattice. In addition, the set of all n -ary OWA operators is studied as a sublattice of the lattice of all the n -ary aggregation functions de ned on a distributive lattice.
  • PublicationOpen Access
    Unsupervised fuzzy measure learning for classifier ensembles from coalitions performance
    (IEEE, 2020) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Domínguez Catena, Iris; Bustince Sola, Humberto; Galar Idoate, Mikel; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    In Machine Learning an ensemble refers to the combination of several classifiers with the objective of improving the performance of every one of its counterparts. To design an ensemble two main aspects must be considered: how to create a diverse set of classifiers and how to combine their outputs. This work focuses on the latter task. More specifically, we focus on the usage of aggregation functions based on fuzzy measures, such as the Sugeno and Choquet integrals, since they allow to model the coalitions and interactions among the members of the ensemble. In this scenario the challenge is how to construct a fuzzy measure that models the relations among the members of the ensemble. We focus on unsupervised methods for fuzzy measure construction, review existing alternatives and categorize them depending on their features. Furthermore, we intend to address the weaknesses of previous alternatives by proposing a new construction method that obtains the fuzzy measure directly evaluating the performance of each possible subset of classifiers, which can be efficiently computed. To test the usefulness of the proposed fuzzy measure, we focus on the application of ensembles for imbalanced datasets. We consider a set of 66 imbalanced datasets and develop a complete experimental study comparing the reviewed methods and our proposal.
  • PublicationOpen Access
    On the influence of interval normalization in IVOVO fuzzy multi-class classifier
    (Springer, 2019) Uriz Martín, Mikel Xabier; Paternain Dallo, Daniel; Bustince Sola, Humberto; Galar Idoate, Mikel; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.
  • PublicationOpen Access
    OWA operators based on admissible permutations
    (IEEE, 2019) Paternain Dallo, Daniel; Jin, LeSheng; Mesiar, Radko; Vavríková, Lucia; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13
    In this work we propose a new OWA operator defined on bounded convex posets of a vector-lattice. In order to overcome the non-existence of a total order, which is necessary to obtain a non-decreasing arrangement of the input data, we use the concept of admissible permutation. Based on it, our proposal calculates the different ways in which the input vector could be arranged, always respecting the partial order. For each admissible arrangement, we calculate an intermediate value which is finally collected and averaged by means of the arithmetic mean. We analyze several properties of this operator and we give some counterexamples of those properties of aggregation functions which are not satisfied.