Morán Juez, José Fernando
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Morán Juez
First Name
José Fernando
person.page.departamento
Ciencias
person.page.instituteName
IMAB. Research Institute for Multidisciplinary Applied Biology
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
3 results
Search Results
Now showing 1 - 3 of 3
Publication Open Access High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L.(Elsevier, 2010-04-29) Ariz Arnedo, Idoia; Esteban Terradillos, Raquel; García Plazaola, José Ignacio; Becerril, José María; Aparicio Tejo, Pedro María; Morán Juez, José Fernando; Ciencias; Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako InstitutuaPhotosynthesis provides plant metabolism with reduced carbon (C) but is also the main source of oxidative stress in plants. Likewise, high doses of NH4+ as sole N source have been reported to be toxic for most plants, resulting in reduced plant growth and restricting C availability. The combination of high photosynthetic photon flux densities (PPFD) and NH4+ nutrition may provide higher C availability but could also have a detrimental effect on the plants, therefore the objective of this study is to evaluate whether NH4+ induces photo-oxidative stress that is exacerbated under high light conditions. Pea plants (Pisum sativum cv. sugar-snap) were grown hydroponically with NH4+ (0.5, 2.5, 5 and 10 mM) under high (750 μmol photons m−2 s−1) or low PPFD conditions (350 μmol photons m−2 s−1). High PPFD contributes to a higher tolerance to ammonium by pea plants, as it originated higher biomass content due to higher photosynthetic rates. However, a deficit of N (0.5 and 2.5 mM NH4+) under high PPFD conditions caused an antioxidant response, as indicated by increased photoprotective pigment and chloroplastic superoxide dismutase contents. Plants grown with higher doses of N and high PPFD showed less need for photoprotection. An increase in the specific leaf weight (SLW) ratio was observed associated not only with high PPFDs but also with the highest NH4+ dose. Overall, these results demonstrate that, despite the activation of some photoprotective responses at high PPFD, there were no photoinhibitory symptoms and a positive effect on NH4+ toxicity, thus suggesting that the harmful effects of NH4+ are not directly related to the generation of photo-oxidative stress.Publication Open Access Use of recombinant iron-superoxide dismutase as a marker of nitrative stress(Elservier, 2008-04-20) Larrainzar Rodríguez, Estíbaliz; Urarte Rodríguez, Estíbaliz; Auzmendi, Iñigo; Ariz Arnedo, Idoia; Arrese-Igor Sánchez, César; González García, Esther; Morán Juez, José Fernando; Ciencias del Medio Natural; Natura Ingurunearen Zientziak; IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua, 57/2007Superoxide dismutases (SODs; EC 1.15.1.1) are a group of metalloenzymes which are essential to protect cells under aerobic conditions. In biological systems, it has been reported that SODs and other proteins are susceptible to be attacked by peroxynitrite (ONOO-) which can be originated from the reaction of nitric oxide with superoxide radical. ONOO- is a strong oxidant molecule capable of nitrating peptides and proteins at the phenyl side chain of the tyrosine residues. In the present work, bovine serum albumin (BSA) and recombinant iron¿superoxide dismutase from the plant cowpea (Vu_FeSOD) are used as target molecules to estimate ONOO- production. The method employs the compound SIN-1, which simultaneously generates -NO and O2- in aerobic aqueous solutions. First, assay conditions were optimized incubating BSA with different concentrations of SIN-1, and at a later stage, the effect on the tyrosine nitration and catalytic activity of Vu_FeSOD was examined by in-gel activity and spectrophotometric assays. Both BSA and Vu_FeSOD are nitrated in a dose-dependent manner, and, at least in BSA nitration, the reaction seems to be metal catalyzed.Publication Open Access A study of the interface of gold nanoparticles conjugated to cowpea fe-superoxide dismutase(MDPI, 2022) Tellechea Malda, Edurne; Asensio, Aarón C.; Ciáurriz Gortari, Paula; Buezo Bravo, Javier; López Gómez, Pedro; Urra Rodríguez, Marina; Morán Juez, José Fernando; Ciencias; Zientziak; Institute for Multidisciplinary Research in Applied Biology - IMAB; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa (Res 309/2022)The iron superoxide dismutase (FeSOD) is a first barrier to defend photosynthetic organisms from superoxide radicals. Although it is broadly present in plants and bacteria, FeSODs are absent in animals. They belong to the same phylogenic family as Mn-containing SODs, which are also highly efficient at detoxifying superoxide radicals. In addition, SODs can react with peroxynitrite, and FeSOD enzyme has already been used to evaluate the anti-nitrative capacity of plant antioxidants. Gold nanoparticles (AuNPs) have been shown to significantly improve the functionality and the efficiency of ligands, providing they are properly assembled. In this work, the characteristics of the recombinant cowpea (Vigna unguiculata) FeSOD (rVuFeSOD) immobilized onto AuNPs were investigated as a function of (1) NP surface chemistry and (2) biofunctionalization methods, either physical adsorption or covalent bonding. The NP surface chemistry was studied by varying the concentration of the ligand molecule 11-mercaptoundecanoic acid (MUA) on the NP surface. The coverage and activity of the protein on AuNPs was determined and correlated to the surface chemistry and the two biofunctionalization methods. rVuFeSOD–AuNPs conjugate stability was monitored through absorption measurements, agarose gel electrophoresis and DLS, enzymatic activity by a colorimetric assay and by in-gel activity assay, and coverage was measured by colorimetric assay. When using physical adsorption, the NP is the most perturbing agent for the activity of the enzyme. In contrast, only the NP coverage was affected by MUA ligand concentration. However, during covalent attachment, both the NP and the concentration of MUA on the surface influenced the enzyme activity, while the coverage of the NP remained constant. The results evidence the importance of the biomolecule and AuNP interaction for the functionality of the hybrid. These strategies can be used to develop electrochemical biosensors for O2•− and for peroxynitrite in biomedical applications.