Rivero Fuente, Pedro J.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Rivero Fuente

First Name

Pedro J.

person.page.departamento

Ingeniería

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 6 of 6
  • PublicationOpen Access
    Self-referenced optical fiber sensor based on LSPR generated by gold and silver nanoparticles embedded in layer-by-layer nanostructured coatings
    (MDPI, 2022) Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Sandúa Fernández, Xabier; Arregui San Martín, Francisco Javier; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación
    In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon has been designed for the detection of two different chemical species (mercury and hydrogen peroxide) by using Layer-by-Layer Embedding (LbL-E) as a nanofabrication technique. In the first step, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) have been synthesized by using a chemical protocol as a function of the strict control of three main parameters, which were polyelectrolyte concentration, a loading agent, and a reducing agent. In the second step, their incorporation into nanometric thin films have been demonstrated as a function of the number of bilayers, which shows two well-located absorption peaks associated to their LSPR in the visible region at 420 nm (AgNPs) and 530 nm (AuNPs). Finally, both plasmonic peaks provide a stable real-time reference measurement, which can be extracted from the spectral response of the optical fiber sensor, which shows a specific sensing mechanism as a function of the analyte of study.
  • PublicationOpen Access
    An optical fiber sensor for Hg2+ detection based on the LSPR of silver and gold nanoparticles embedded in a polymeric matrix as an effective sensing material
    (MDPI, 2021-07-07) Martínez Hernández, María Elena; Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.
  • PublicationOpen Access
    Visible light activation of gold nanoparticles embedded into titanium dioxide surface in electrospun polymeric coatings
    (MDPI, 2024) Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Calvopiña, Jonathan; Rodríguez Trías, Rafael; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    This work reports the development of a functional photocatalytic coating based on a combination of polymeric electrospun fibres and nanoparticles that is intended to be activated in the visible light range. In this sense, the resulting fibres can act as an effective matrix for the incorporation of titanium dioxide (TiO2) particles, which are covered by gold nanoparticles (AuNPs), in the outer surface of the metal oxide precursor. In the first step of the process, the optical properties of the nanoparticles were determined by UV-Vis spectroscopy. The extension of the visible absorption can be associated to the localized surface plasmon resonance (LSPR) of the metallic AuNPs. In addition, the resultant particle size distribution and average particle diameter was evaluated by dynamic light scattering (DLS) measurements. Furthermore, the phase composition and porosity of the functional particle powder were analysed by an XRD and N2 adsorption test. In the second step, these synthesized particles have been successfully immobilized into a PAA + β-CD electrospun fibre matrix by using the two different deposition methods of dip-coating and solution-casting, respectively. The morphological characterization of the samples was implemented by means of scanning electron microscopy (SEM), showing uniform and homogeneous, free-beaded fibres with a random distribution of the synthesized particles deposited onto the electrospun fibres. Then, the functional coatings were removed from the substrate, and a thermogravimetric (TGA) analysis was carried out for each sample in order to obtain the precursor mass immobilized in the coating. Once the overall mass of precursor was obtained, the percentage of TiO2 particles and AuNPs in the precursor was calculated by using inductively coupled plasma atomic emission spectrometry (ICP-AES). Finally, the photocatalytic activity of both functional solution and electrospun coatings were evaluated in terms of a gradual degradation of rhodamine B (RhB) dye after continuous exposition to a visible-light lamp.
  • PublicationOpen Access
    In situ synthesis of gold nanoparticles in layer-b y-layer polymeric coatings for the fabrication of optical fiber sensors
    (MDPI, 2022) Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Arregui San Martín, Francisco Javier; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación
    A new method is proposed to tune the interferometric response of wavelength-based optical fiber sensors. Using the nanoparticle in situ synthesis (ISS) technique, it is possible to synthesize gold nanoparticles (AuNPs) within a pre-existing polymeric thin film deposited at the end-face of an optical fiber. This post-process technique allows us to adjust the optical response of the device. The effect of the progressive synthesis of AuNPs upon polymeric film contributed to a remarkable optical contrast enhancement and a very high tuning capability of the reflection spectra in the visible and near-infrared region. The spectral response of the sensor to relative humidity (RH) variations was studied as a proof of concept. These results suggest that the ISS technique can be a useful tool for fiber optic sensor manufacturing.
  • PublicationOpen Access
    Self-referenced optical fiber sensor for hydrogen peroxide detection based on LSPR of metallic nanoparticles in layer-by-layer films
    (MDPI, 2019) Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Sada Oreja, Samuel; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Intensity-based optical fiber sensors are one of the most studied sensor approaches thanks to their simplicity and low cost. Nevertheless, their main issue is their lack of robustness since any light source fluctuation, or unexpected optical setup variation is directly transferred to the output signal, which, significantly reduces their reliability. In this work, a simple and robust hydrogen peroxide (H2O2) optical fiber sensor is proposed based on the Localized Surface Plasmon Resonance (LSPR) sensitivity of silver and gold metallic nanoparticles. The precise and robust detection of H2O2 concentrations in the ppm range is very interesting for the scientific community, as it is a pathological precursor in a wide variety of damage mechanisms where its presence can be used to diagnose important diseases such as Parkinson's disease, diabetes, asthma, or even Alzheimer's disease). In this work, the sensing principle is based the oxidation of the silver nanoparticles due the action of the hydrogen peroxide, and consequently the reduction of the efficiency of the plasmonic coupling. At the same time, gold nanoparticles show a high chemical stability, and therefore provide a stable LSPR absorption band. This provides a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable reading of the hydrogen peroxide concentration.
  • PublicationOpen Access
    A comparative study in the sensitivity of optical fiber refractometers based on the incorporation of gold nanoparticles into layer-by-layer films
    (Exeley, 2015) Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this work, optical fiber refractometers based on the successive incorporation of gold nanoparticles have been fabricated by means of the Layer-by-Layer Embedding (LbL-E) deposition technique. This enables the apparition of two different optical phenomena, Localized Surface Plasmon Resonance (LSPR) and Lossy Mode Resonance (LMR). The absorption peaks related to both phenomena were captured during the fabrication process, showing a different evolution as a function of the resultant thickness coating. Initially, LSPR band is observed for thinner coatings, whereas multi-LMR bands are observed as the thickness coating is increased. In addition, the response of both phenomena to variations of the surrounding medium refractive index (SMRI) was monitored, studying their different sensitivities. LSPR band only shows intensity variation with negligible wavelength displacement whereas LMR bands present a strong wavelength response. The combination of both resonances opens the door in the design of self-referenced optical devices for sensing applications.