Publication:
Visible light activation of gold nanoparticles embedded into titanium dioxide surface in electrospun polymeric coatings

Consultable a partir de

Date

2024

Authors

Sandúa Fernández, Xabier
Calvopiña, Jonathan

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Gobierno de Navarra//PC080%2F081 GREEN-COPPER

Abstract

This work reports the development of a functional photocatalytic coating based on a combination of polymeric electrospun fibres and nanoparticles that is intended to be activated in the visible light range. In this sense, the resulting fibres can act as an effective matrix for the incorporation of titanium dioxide (TiO2) particles, which are covered by gold nanoparticles (AuNPs), in the outer surface of the metal oxide precursor. In the first step of the process, the optical properties of the nanoparticles were determined by UV-Vis spectroscopy. The extension of the visible absorption can be associated to the localized surface plasmon resonance (LSPR) of the metallic AuNPs. In addition, the resultant particle size distribution and average particle diameter was evaluated by dynamic light scattering (DLS) measurements. Furthermore, the phase composition and porosity of the functional particle powder were analysed by an XRD and N2 adsorption test. In the second step, these synthesized particles have been successfully immobilized into a PAA + β-CD electrospun fibre matrix by using the two different deposition methods of dip-coating and solution-casting, respectively. The morphological characterization of the samples was implemented by means of scanning electron microscopy (SEM), showing uniform and homogeneous, free-beaded fibres with a random distribution of the synthesized particles deposited onto the electrospun fibres. Then, the functional coatings were removed from the substrate, and a thermogravimetric (TGA) analysis was carried out for each sample in order to obtain the precursor mass immobilized in the coating. Once the overall mass of precursor was obtained, the percentage of TiO2 particles and AuNPs in the precursor was calculated by using inductively coupled plasma atomic emission spectrometry (ICP-AES). Finally, the photocatalytic activity of both functional solution and electrospun coatings were evaluated in terms of a gradual degradation of rhodamine B (RhB) dye after continuous exposition to a visible-light lamp.

Keywords

Dip-coating, Gold nanoparticles, Photocatalysis, Rhodamine B, Solution-casting, Titanium dioxide, Visible-light

Department

Ingeniería / Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This research was funded by the Government of Navarra-Department of Economic Development (PC080/081 GREEN-COPPER).

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.