Wilhelmi, Miguel R.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Wilhelmi

First Name

Miguel R.

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Understanding the onto-semiotic approach in mathematics education through the lens of the cultural historical activity theory
    (Sringer, 2024-05-29) Godino, Juan D.; Batanero, Carmen; Burgos, María; Wilhelmi, Miguel R.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Research in mathematics education can be understood as a system of activities addressing the basic and applied problems related to teaching and learning of mathematics. Such a system includes the activities of foundation, planning, implementation, evaluation of mathematics instruction, and teacher professional development, which are supported by different theories. This diversity of theories raises interest in their comparison, coordination, and possible integration. The paper aims to present a case of application of the Cultural Historical Activity Theory (CHAT), in its 3rd and 4th generation versions, to analyze the emergence of the Onto-semiotic Approach to mathematical knowledge and instruction as a theoretical framework that addresses the study of the five partial activities mentioned above. This use of the CHAT can be useful in studies on theory articulation by focusing not only on the subjects, the object, and the instruments but also on the community context, the ecological-normative environment in which these activities take place, and the dilemmas or contradictions between theories.
  • PublicationOpen Access
    Papel de las situaciones adidácticas en el aprendizaje matemático. Una mirada crítica desde el enfoque ontosemiótico
    (Universitat Autònoma de Barcelona, 2020) Godino, Juan D.; Burgos, María; Wilhelmi, Miguel R.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    El postulado del aprendizaje por adaptación a un medio antagonista asumido por la teoría de situaciones didácticas en matemáticas se corresponde con el papel central que esta teoría atribuye a las situaciones adidácticas (momentos en los que tiene lugar la producción autónoma de conocimientos por parte de los estudiantes). Desde el punto de vista de las teorías socioculturales del aprendizaje se cuestiona la pertinencia de los planteamientos constructivistas cuando se trata del aprendizaje de conocimientos científicos. En este trabajo se justifica la importancia de un modelo didáctico dialógico-colaborativo para las situaciones de primer encuentro con los objetos de conocimiento matemáticos en el que el profesor y los estudiantes trabajan juntos en la resolución de las situaciones-problemas. La justificación de este modelo didáctico está basada en los supuestos epistemológicos, ontológicos, semióticos e instruccionales del enfoque ontosemiótico del conocimiento y la instrucción matemáticos.
  • PublicationOpen Access
    Analysis of didactical trajectories in teaching and learning mathematics: overcoming extreme objectivist and constructivist positions
    (Modestum, 2019) Godino, Juan D.; Rivas, Hernán; Burgos, María; Wilhelmi, Miguel R.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    There is currently a consensus in mathematics education that favors constructivist instructional models, which are based on the inquiry of knowledge by students. There are, however, different views that consider objectivist models, based on knowledge transmission (direct or explicit teaching) more effective in the teaching of scientific disciplines. In this article we analyze an instructional process on elementary probability directed to prospective primary education teachers, which was designed under constructivist principles and is based on data analysis projects. A systematic analysis of the study process reveals that the optimization of the learning process involves implementing frequent moments that require explicit transmission of knowledge by the teacher. This analysis is based on some theoretical tools from the onto-semiotic approach to mathematical knowledge and instruction, which allow identifying significant didactical facts that support a mixed instructional model. The relevance for mathematics education to contemplate the use of mixed instructional models that articulate constructivists and objectivist approaches to promote mathematical learning is concluded.