Teberio BerdĂșn, Fernando

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Teberio BerdĂșn

First Name

Fernando

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 21
  • PublicationRestricted
    IdentificaciĂłn de sinusoidales no estacionarias para descomposiciĂłn de audio y detecciĂłn de PItCH
    (2009) Teberio BerdĂșn, Fernando; Zivanovic, Miroslav; Escuela TĂ©cnica Superior de Ingenieros Industriales y de TelecomunicaciĂłn; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa
  • PublicationOpen Access
    New filter design methods and topologies for the future microwave and millimeter-wave high-capacity satellites
    (2018) Teberio BerdĂșn, Fernando; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this thesis, several novel design techniques for waveguide low-pass filters (LPFs) and band-pass filters (BPFs) are proposed. Firstly, a quasi-analytical technique for classical corrugated waveguide LPFs is presented. It allows to reduce the design-times and its associated costs, since the final dimensions of the final prototype are computed by closed-form expressions. This technique has been extended to include the inherent rounded corners due to the fabrication by conventional milling techniques. In this case, the novel method is based on very simple equations which can be easily computed by an EM solver tool in a negligible CPU time. Additionally, a new method to embed routing capability in the classical corrugated LPF avoiding subsequent bending structures is also proposed. It permits to reduce the insertion loss, volume/weight, and PIM. The previous filters are the classical solution when the suppression of only the fundamental mode is needed. However, if the suppression of the higher-order modes is also a requirement, the classical solution is the waffle-iron filter. This filter has a cumbersome time-consuming design method mainly based on approximations and optimizations. In this Thesis, an accurate and simple design procedure for classical waffle-iron filters is also proposed. With this technique, waffle-iron filters with and without transmission zeros can be designed in a matter of minutes. Besides, a new type of waffle-iron filter is also presented. This novel structure is more compact and has lower insertion loss than its classical counterpart. The main issue of the previous classical filters is that it is not possible to achieve a wide rejected band and a high-power behavior simultaneously. This issue has been surpassed with the novel LPFs with smooth profile presented in this Thesis. Specifically, a synthesis technique has been developed, which permits to obtain larger gaps and very wide rejected bands at the same time. These new structures allow their use in high-power applications such as the output stage of satellite payloads. However, although their fabrication following space-compatible procedures has been demonstrated, it is quite difficult and expensive to be utilized in mass-production. Therefore, a new design method which accomplishes easy-to-manufacture LPFs with the same performance in terms of frequency and high-power behavior has been proposed. In this case, the objective is to reduce the fabrication costs and to develop a fully-customized technique that opens the range of potential applications of these devices. Indeed, its feasibility to be utilized as output filter in broadband satellite payloads, between the amplifiers and the diplexers in multi-beam payloads, and in high-performance diplexers is demonstrated. Furthermore, a combination between the latter low-pass filtering structure and a classical high-pass filtering function is utilized to develop a new class of BPF which can be used in high-performance compact satellite diplexers. Finally, a different BPFs with reduced sensitivity to manufacturing tolerances is also proposed. This structure finds its niche market in the upcoming Q/V-band satellite payloads. Indeed, the fabrication yield of a novel BPF intended for Q-band payloads has been dramatically improved in comparison with the one obtained from its classical counterpart. Last but not least, the size of the previous structures can be reduced with the new meandered topology developed in this Thesis. This technique permits to reduce the size of the previous BPFs (and also in classical LPFs) along with embedding routing capabilities, opening the door to more complex and compact terminals due to their adaptable and flexible layout. Additionally, it also allows to include several transmission zeros to enhance the out-of-band rejection of the LPFs. Low-power and high-power measurements have been performed in several manufactured prototypes to validate the frequency behaviour and the power-handling capability of the designed devices, respectively.
  • PublicationOpen Access
    The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors
    (IOP Publishing, 2022) Aja, Beatriz; Arguedas Cuendis, Sergio; Arregui Padilla, IvĂĄn; Artal, Eduardo; Barreiro, R. BelĂ©n; Casas, Francisco J.; Ory, Marina C. de; DĂ­az-Morcillo, Alejandro; Fuente, Luisa de la; Gallego, Juan Daniel; GarcĂ­a-BarcelĂł, JosĂ© MarĂ­a; Gimeno, Benito; GĂłmez, Alicia; Granados, Daniel; Kavanagh, Bradley J.; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; Lozano-Guerrero, Antonio JosĂ©; Magaz, MarĂ­a T.; MartĂ­n-Pintado, JesĂșs; MartĂ­nez-GonzĂĄlez, Enrique; Miralda-EscudĂ©, Jordi; MonzĂł-Cabrera, Juan; Najarro de la Parra, Francisco; Navarro-Madrid, JosĂ© R.; NĂșñez Chico, Ana B.; Pascual, Juan Pablo; Pelegrin, Jorge; Peña Garay, Carlos; RodrĂ­guez, David; SocuĂ©llamos, Juan M.; Teberio BerdĂșn, Fernando; Teniente Vallinas, Jorge; Vielva, Patricio; Vila, IvĂĄn; Vilar, RocĂ­o; Villa, Enrique; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330–460 ÎŒeV, within the W-band (80–110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
  • PublicationOpen Access
    Chirping techniques to maximize the power-handling capability of harmonic waveguide low-pass filters
    (IEEE, 2016) Teberio BerdĂșn, Fernando; Arregui Padilla, IvĂĄn; GĂłmez Torrent, AdriĂĄn; Arnedo Gil, Israel; Chudzik, Magdalena; Zedler, Michael; Goertz, Franz-Josef; Jost, Rolf; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel chirping technique is applied to the design of very high-power waveguide harmonic low-pass filters. The technique could be used, for instance, to avoid multipactor testing in multicarrier systems such as the output multiplexer of a communications satellite. The novel chirped filter shows low insertion loss, all higher order mode suppression, and broad stopband rejection up to the third harmonic. This paper focuses on the maximization of the filter power-handling capability without affecting its excellent frequency behavior. Given a certain frequency response, the E-plane mechanical gap of the structure and the length (in the propagation direction) of the waveguide sections between its constituent bandstop elements can be considered to improve the high-power behavior. However, the power performance may not be sufficient yet in some applications if we wish, for instance, multipactor testing to be avoided. This becomes feasible by chirping the length (in the propagation direction) of the bandstop elements. An example for Ku band is discussed for relevant frequency specifications. An improvement from ∌8 kW (non-chirped filter) to more than 100 kW (chirped filter) is obtained. As a reference, the equivalent waffle-iron filter can handle only 0.15 kW. Such high-power threshold levels have never been reported before for such kind of filters.
  • PublicationOpen Access
    Robust tolerance design of bandpass filter with improved frequency response for Q-band satellite applications
    (IEEE, 2021) Sami, Abdul; Teberio BerdĂșn, Fernando; Miranda SantafĂ©, Luis; Arnedo Gil, Israel; MartĂ­n Iglesias, Petronilo; Benito Pertusa, David; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arregui Padilla, IvĂĄn; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A rectangular waveguide bandpass filter for Q-band with simple fabrication is proposed in this letter. The design is based on the use of the first passband replica of commensurate-line stepped-impedance structures and achieves the suppression of their inherent low-pass response. In order to do it, the filter is implemented by rectangular waveguide sections with different widths and heights that can be analytically calculated. The technique is validated by a 9th order Chebyshev filter with passband between 40 and 43 GHz and fabrication yield equal to 84 % for a manufacturing error of ± 20 Όm. The measured results of the prototype fabricated with CNC milling are in good agreement with the simulated ones.
  • PublicationOpen Access
    Rectangular waveguide filters with meandered topology
    (IEEE, 2018) Teberio BerdĂșn, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, IvĂĄn; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arnedo Gil, Israel; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000130
    In this paper, a new topology for rectangular waveguide bandpass and low-pass filters is presented. A simple, accurate, and robust design technique for these novel meandered waveguide filters is provided. The proposed filters employ a concatenation of ±90° E-plane mitered bends (±90° EMBs) with different heights and lengths, whose dimensions are consecutively and independently calculated. Each ±90° EMB satisfies a local target reflection coefficient along the device so that they can be calculated separately. The novel structures allow drastically reduce the total length of the filters and embed bends if desired, or even to provide routing capabilities. Furthermore, the new meandered topology allows the introduction of transmission zeros above the passband of the low-pass filter, which can be controlled by the free parameters of the ±90° EMBs. A bandpass and a low-pass filter with meandered topology have been designed following the proposed novel technique. Measurements of the manufactured prototypes are also included to validate the novel topology and design technique, achieving excellent agreement with the simulation results.
  • PublicationOpen Access
    Metal 3D printing for RF/microwave high-frequency parts
    (Springer, 2022) MartĂ­n Iglesias, Petronilo; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; Teberio BerdĂșn, Fernando; Arregui Padilla, IvĂĄn; Marechal, M.; Calves, P.; Hazard, M.; Pambaguian, L.; Brandao, A.; RodrĂ­guez Castillo, S.; Martin, T.; Percaz Ciriza, Jon Mikel; Iza, V.; MartĂ­n-Iglesias, Santiago; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Space Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reli- ability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.
  • PublicationOpen Access
    Compact harmonic rejection filter for C-band high-power satellite applications
    (IEEE, 2020) Teberio BerdĂșn, Fernando; MartĂ­n Iglesias, Petronilo; Arregui Padilla, IvĂĄn; Arnedo Gil, Israel; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A compact high-power low-pass filter for C-band broadband satellite applications is presented in this paper. The filter is composed of three different sections. A 9th-order compact high-power multi-ridge structure achieves the fundamental mode stopband and the suppression of all-higher order modes. The required slope between the pass- and the stopband is accomplished by means of two step-shaped bandstop elements separated by very short waveguide sections. The passband of the filter is achieved through two compact matching networks. The filter is only 164-mm long, has less than 0.05 dB of insertion loss, handles 9.6 kW (single-carrier multipactor analysis), and has a very wide stopband (up to Ku-band). A dramatic size reduction has been achieved with respect to other commercially available solutions.
  • PublicationOpen Access
    Design procedure for new compact waffle-iron ilters with transmission zeros
    (IEEE, 2018) Teberio BerdĂșn, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, IvĂĄn; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arnedo Gil, Israel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel waffle-iron filter with transmission zeros at multiple frequencies, along with its design procedure, is presented. The proposed filter features a high-power behavior and a wide rejected band in a single compact structure by means of a set of transmission zeros that can also be placed close to the passband. Its design method rests on a divide-and-rule strategy, where the physical dimensions of the constituent design entities (DEs) can be easily computed in a very short time. A novel high-power compact waffle-iron filter with transmission zeros at multiple frequencies has been designed as well as several classical waffle-iron filters with transmission zeros at one frequency only, using a detailed step-by-step procedure which avoids the bruteforce optimizations needed until now. Multipactor and corona simulations have been conducted proving a high-power handling capability of 1.8 kW and 78.6 W, respectively. A prototype of the novel filter has been fabricated, obtaining a remarkable accordance between the simulated and measured results.
  • PublicationOpen Access
    High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels
    (IEEE, 2020) Arregui Padilla, IvĂĄn; Teberio BerdĂșn, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    To design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.