Person:
Teberio Berdún, Fernando

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Teberio Berdún

First Name

Fernando

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

ORCID

0000-0002-4603-2273

person.page.upna

810720

Name

Search Results

Now showing 1 - 3 of 3
  • PublicationOpen Access
    Routing with classical corrugated waveguide low-pass filters with embedded bends
    (EMW Publishing, 2018) Teberio Berdún, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, Iván; Martín Iglesias, Petronilo; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Arnedo Gil, Israel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A very simple design method to embed routing capabilities in classical corrugated filters is presented in this paper. The method is based on the calculation of the heights and lengths of the so-called filters design building blocks, by means of a consecutive and separate extraction of their local reflection coefficients along the device. The proposed technique is proved with a 17th-order Zolotarev filter whose topology is bent twice so that the input and output ports are in the same plane while preserving the in-line filters behaviour. This new filter allows the possibility of eliminating subsequent bending structures, reducing the insertion loss, weight, and PIM.
  • PublicationOpen Access
    Chirping techniques to maximize the power-handling capability of harmonic waveguide low-pass filters
    (IEEE, 2016) Teberio Berdún, Fernando; Arregui Padilla, Iván; Gómez Torrent, Adrián; Arnedo Gil, Israel; Chudzik, Magdalena; Zedler, Michael; Goertz, Franz-Josef; Jost, Rolf; Lopetegui Beregaña, José María; Gómez Laso, Miguel Ángel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A novel chirping technique is applied to the design of very high-power waveguide harmonic low-pass filters. The technique could be used, for instance, to avoid multipactor testing in multicarrier systems such as the output multiplexer of a communications satellite. The novel chirped filter shows low insertion loss, all higher order mode suppression, and broad stopband rejection up to the third harmonic. This paper focuses on the maximization of the filter power-handling capability without affecting its excellent frequency behavior. Given a certain frequency response, the E-plane mechanical gap of the structure and the length (in the propagation direction) of the waveguide sections between its constituent bandstop elements can be considered to improve the high-power behavior. However, the power performance may not be sufficient yet in some applications if we wish, for instance, multipactor testing to be avoided. This becomes feasible by chirping the length (in the propagation direction) of the bandstop elements. An example for Ku band is discussed for relevant frequency specifications. An improvement from ∼8 kW (non-chirped filter) to more than 100 kW (chirped filter) is obtained. As a reference, the equivalent waffle-iron filter can handle only 0.15 kW. Such high-power threshold levels have never been reported before for such kind of filters.
  • PublicationOpen Access
    Resonant quasi-periodic structure for rectangular waveguide technology with wide stopband and band-pass behavior
    (EMW Publishing, 2016) Arregui Padilla, Iván; Teberio Berdún, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; Gómez Torrent, Adrián; Chudzik, Magdalena; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a novel quasi-periodic structure for rectangular waveguide technology is proposed. The constituent unit cells of the structure feature a resonant behavior, providing high attenuation levels in the stopband with a compact (small period) size. By applying a smooth taper-like variation to the height of the periodic structure, very good matching is achieved in the passband while the bandwidth of the stopband is strongly increased. Moreover, by smoothly tapering the width of the structure, a band-pass frequency behavior is obtained. In order to demonstrate the capabilities of the novel quasi-periodic structure proposed, a band-pass structure with good matching, wide rejected band, and high-power handling capability has been designed, fabricated, and measured obtaining very good results.