Teberio BerdĂșn, Fernando

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Teberio BerdĂșn

First Name

Fernando

person.page.departamento

Ingeniería Eléctrica y Electrónica

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 22
  • PublicationOpen Access
    Metal 3D printing for RF/microwave high-frequency parts
    (Springer, 2022) MartĂ­n Iglesias, Petronilo; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; Teberio BerdĂșn, Fernando; Arregui Padilla, IvĂĄn; Marechal, M.; Calves, P.; Hazard, M.; Pambaguian, L.; Brandao, A.; RodrĂ­guez Castillo, S.; Martin, T.; Percaz Ciriza, Jon Mikel; Iza, V.; MartĂ­n-Iglesias, Santiago; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Space Systems have been historically characterised by high performance, high reliability and high cost. Every new generation of space systems tends to improve performance, keep as much as possible reliability, speeding the lead time and lower the cost. Aggressive approach is nowadays followed by some of the players of the new space ecosystem where, for instance, reli- ability can be relaxed thanks for the in-orbit redundancy or robustness to failures by having a constellation with a high number of satellites. This push towards the technology and system limit requires to investigate new methods for the manufacturing of RF/Microwave parts. RF devices such as those based on waveguide structures, benefit from an additive manufacturing approach in terms of radio frequency (RF) performance and compactness. However each manufacturing approach comes with specific features and limitations which need to be well understood and, in some cases, even taking advantage of them. This paper provides a short review of some of the RF/Microwave parts already manufactured using this technology. The paper will focus mainly on metal 3D printing parts since this technology is, at the moment, well accepted by the space community.
  • PublicationOpen Access
    High-power filter design in waveguide technology: future generation of waveguide satellite filters in payloads handling increasing bit rates and numbers of channels
    (IEEE, 2020) Arregui Padilla, IvĂĄn; Teberio BerdĂșn, Fernando; Arnedo Gil, Israel; Percaz Ciriza, Jon Mikel; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    To design a filter for a particular application, many issues must first be considered. Which technology will be the most convenient? What design technique will provide better results for a particular set of frequency specifications? Once the device has been designed, will it fulfill all of the (not only electrical) requirements? It is not always easy to answer such questions in advance. In this article, we try to shed some light on these questions when our aim is the design of filters for high-power operation.
  • PublicationOpen Access
    Design procedure for new compact waffle-iron ilters with transmission zeros
    (IEEE, 2018) Teberio BerdĂșn, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, IvĂĄn; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arnedo Gil, Israel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel waffle-iron filter with transmission zeros at multiple frequencies, along with its design procedure, is presented. The proposed filter features a high-power behavior and a wide rejected band in a single compact structure by means of a set of transmission zeros that can also be placed close to the passband. Its design method rests on a divide-and-rule strategy, where the physical dimensions of the constituent design entities (DEs) can be easily computed in a very short time. A novel high-power compact waffle-iron filter with transmission zeros at multiple frequencies has been designed as well as several classical waffle-iron filters with transmission zeros at one frequency only, using a detailed step-by-step procedure which avoids the bruteforce optimizations needed until now. Multipactor and corona simulations have been conducted proving a high-power handling capability of 1.8 kW and 78.6 W, respectively. A prototype of the novel filter has been fabricated, obtaining a remarkable accordance between the simulated and measured results.
  • PublicationOpen Access
    Compact harmonic rejection filter for C-band high-power satellite applications
    (IEEE, 2020) Teberio BerdĂșn, Fernando; MartĂ­n Iglesias, Petronilo; Arregui Padilla, IvĂĄn; Arnedo Gil, Israel; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A compact high-power low-pass filter for C-band broadband satellite applications is presented in this paper. The filter is composed of three different sections. A 9th-order compact high-power multi-ridge structure achieves the fundamental mode stopband and the suppression of all-higher order modes. The required slope between the pass- and the stopband is accomplished by means of two step-shaped bandstop elements separated by very short waveguide sections. The passband of the filter is achieved through two compact matching networks. The filter is only 164-mm long, has less than 0.05 dB of insertion loss, handles 9.6 kW (single-carrier multipactor analysis), and has a very wide stopband (up to Ku-band). A dramatic size reduction has been achieved with respect to other commercially available solutions.
  • PublicationOpen Access
    Producing and exploiting simultaneously the forward and backward coupling in EBG-assisted microstrip coupled lines
    (IEEE, 2016) Percaz Ciriza, Jon Mikel; Chudzik, Magdalena; Arnedo Gil, Israel; Arregui Padilla, IvĂĄn; Teberio BerdĂșn, Fernando; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa
    In this paper, a methodology is proposed for the design of EBG-assisted coupled line structures in microstrip technology, controlling independently the forward and backward coupling. It is based on the use of a single-frequency-tuned electromagnetic bandgap (EBG) structure to produce a single backward-coupled frequency band, in combination with the forward-coupled frequency bands produced by the difference between the even and odd mode propagation constants present in microstrip technology. Thus, the central frequency of the backward-coupled band is controlled by the period of the EBG structure, while the frequencies of the forward coupled bands are fixed by the length of the device. The rest of the frequencies go to the direct port giving rise to a device with the input port matched at all the frequencies and where the coupled bands are easily controllable by adjusting the corresponding design parameter. The novel methodology proposed has been successfully demonstrated by designing a triplexer intended for the GSM (900 MHz) and WLAN (2.4 GHz and 5.5 GHz) telecommunication bands.
  • PublicationRestricted
    IdentificaciĂłn de sinusoidales no estacionarias para descomposiciĂłn de audio y detecciĂłn de PItCH
    (2009) Teberio BerdĂșn, Fernando; Zivanovic, Miroslav; Escuela TĂ©cnica Superior de Ingenieros Industriales y de TelecomunicaciĂłn; Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa
  • PublicationOpen Access
    The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors
    (IOP Publishing, 2022) Aja, Beatriz; Arguedas Cuendis, Sergio; Arregui Padilla, IvĂĄn; Artal, Eduardo; Barreiro, R. BelĂ©n; Casas, Francisco J.; Ory, Marina C. de; DĂ­az-Morcillo, Alejandro; Fuente, Luisa de la; Gallego, Juan Daniel; GarcĂ­a-BarcelĂł, JosĂ© MarĂ­a; Gimeno, Benito; GĂłmez, Alicia; Granados, Daniel; Kavanagh, Bradley J.; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; Lozano-Guerrero, Antonio JosĂ©; Magaz, MarĂ­a T.; MartĂ­n-Pintado, JesĂșs; MartĂ­nez-GonzĂĄlez, Enrique; Miralda-EscudĂ©, Jordi; MonzĂł-Cabrera, Juan; Najarro de la Parra, Francisco; Navarro-Madrid, JosĂ© R.; NĂșñez Chico, Ana B.; Pascual, Juan Pablo; Pelegrin, Jorge; Peña Garay, Carlos; RodrĂ­guez, David; SocuĂ©llamos, Juan M.; Teberio BerdĂșn, Fernando; Teniente Vallinas, Jorge; Vielva, Patricio; Vila, IvĂĄn; Vilar, RocĂ­o; Villa, Enrique; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330–460 ÎŒeV, within the W-band (80–110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
  • PublicationOpen Access
    Rectangular waveguide filters with meandered topology
    (IEEE, 2018) Teberio BerdĂșn, Fernando; Percaz Ciriza, Jon Mikel; Arregui Padilla, IvĂĄn; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arnedo Gil, Israel; IngenierĂ­a ElĂ©ctrica y ElectrĂłnica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua, 0011-1365-2017-000130
    In this paper, a new topology for rectangular waveguide bandpass and low-pass filters is presented. A simple, accurate, and robust design technique for these novel meandered waveguide filters is provided. The proposed filters employ a concatenation of ±90° E-plane mitered bends (±90° EMBs) with different heights and lengths, whose dimensions are consecutively and independently calculated. Each ±90° EMB satisfies a local target reflection coefficient along the device so that they can be calculated separately. The novel structures allow drastically reduce the total length of the filters and embed bends if desired, or even to provide routing capabilities. Furthermore, the new meandered topology allows the introduction of transmission zeros above the passband of the low-pass filter, which can be controlled by the free parameters of the ±90° EMBs. A bandpass and a low-pass filter with meandered topology have been designed following the proposed novel technique. Measurements of the manufactured prototypes are also included to validate the novel topology and design technique, achieving excellent agreement with the simulation results.
  • PublicationOpen Access
    Synthesis of rectangular waveguide filters with smooth profile oriented to direct metal additive manufacturing
    (IEEE, 2023) Percaz Ciriza, Jon Mikel; Hussain, Jabir; Arregui Padilla, IvĂĄn; Teberio BerdĂșn, Fernando; Benito Pertusa, David; MartĂ­n Iglesias, Petronilo; Arnedo Gil, Israel; GĂłmez Laso, Miguel Ángel; Lopetegui Beregaña, JosĂ© MarĂ­a; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel design method for rectangular waveguide filters intended for fabrication using direct metal additive manufacturing is proposed. The synthesized filters will feature a smooth profile that allows us to fabricate them orienting the filter propagation axis in the vertical building direction, achieving an optimum configuration for direct metal additive manufacturing fabrication. The novel design method is valid for any all-pole transfer function, which is initially implemented with a commensurate-line distributed unit element prototype. The impulse response of that initial prototype is then properly interpolated to obtain the target response for a smooth-profiled filter with similar length and profile excursion. Finally, the target impulse response just generated is implemented in rectangular waveguide technology employing a novel inverse scattering synthesis technique that relies on the coupled-mode theory to model the electromagnetic behavior of the waveguide filter. The novel inverse scattering synthesis technique is general and also valid for the case of filters with very high rejection levels, which is of great relevance in rectangular waveguide technology. A Ku-band low-pass filter with stringent satellite specifications is designed using the proposed method, fabricated by means of a direct metal additive manufacturing technique, and measured with a vector network analyzer. A very good agreement is achieved between the simulated and measured results, fulfilling the required specifications and demonstrating the feasibility and performance of the novel design method.
  • PublicationOpen Access
    Multipactor breakdown analysis of Ku-band meandered low-pass filter
    (2022) Sami, Abdul; Teberio BerdĂșn, Fernando; Arnedo Gil, Israel; MartĂ­n Iglesias, Petronilo; Lopetegui Beregaña, JosĂ© MarĂ­a; GĂłmez Laso, Miguel Ángel; Arregui Padilla, IvĂĄn; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĂ­a ElĂ©ctrica, ElectrĂłnica y de ComunicaciĂłn
    In this work, a very compact rectangular waveguide low-pass filter with meandered topology based on commensurate lines for Ku-band satellite applications is analysed for high-power handling capabilities. The device consists of rectangular waveguide sections properly cascaded to form a meandered topology to obtain the desired value of the local reflection coefficients. which are essential to achieve the target frequency response and also to keep large mechanical gaps. Hence, this technique allows us not only to design a filter with compact size but a filter geometry which is suitable for high power applications. In the paper, the low-pass filter based on commensurate lines is first designed by cascading E-plane mitered bends (±90° EMBs) in CST Microwave Studio (MWS) and then the values of the electromagnetic fields at the passband frequencies are exported to Spark3D to perform a multipactor analysis. The critical areas inside the device where the multipactor discharge occurs will also be identified in the high-power analysis. https://doi.org/10.5281/zenodo.7343236