Gandía Pascual, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Gandía Pascual

First Name

Luis

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 50
  • PublicationOpen Access
    Application of a modeling tool to describe fly ash generation, composition, and melting behavior in a wheat straw fired commercial power plant
    (MDPI, 2020) Funcia, Ibai; Bimbela Serrano, Fernando; Gil, Javier; Gandía Pascual, Luis; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ash behavior is a key operational aspect of industrial-scale power generation by means of biomass combustion. In this work, FactSage™ 6.4 software was used to develop and assess three models of wheat straw combustion in a vibrating grate-fired commercial boiler of 16 MWth, aiming to describe the inorganic elements release as well as fly ash melting behavior and composition. Simulations were carried out solving four consecutive calculation stages corresponding to the main plant sections. Chemical fractionation was adopted in order to distinguish between reactive, inert and partially reactive biomass fractions. The developed models allow take into account different levels of partial reactivity, values of the temperature for each sub-stage on the grate, and ways to apply entrained streams based on data from the elemental analyses of the fly ashes. To this end, two one-week experimental campaigns were conducted in the plant to carry out the sampling. It has been found that considering chemical fractionation is indispensable to describe the entrainment of solid particles in the gas stream. In addition, the best results are obtained by adopting a small reactivity (2%) of the inert fraction. As for fly ash composition, the concentrations of the major elements showed good agreement with the results from the chemical analyses. In the case of S and Cl, calculations revealed a match with gas cooling effects in the superheaters as well as an entrainment effect. The melting behavior together with the presence of KCl and K2SO4 condensates, point out at possible corrosion phenomena in walls at temperatures of 700–750 °C.
  • PublicationOpen Access
    Life cycle assessment of natural gas fuelled power plants based on chemical looping combustion technology
    (Elsevier, 2019-07-30) Navajas León, Alberto; Mendiara, Teresa; Goñi, Víctor; Jiménez, Adrián; Gandía Pascual, Luis; Abad, Alberto; García Labiano, Francisco; Diego, Luis F. de; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    Among the different Carbon Capture and Storage (CCS) technologies being developed in the last decades, Chemical Looping Combustion (CLC) stands out since it allows inherent CO2 capture. In the CLC process, there is a solid oxygen carrier circulating between two reactors in a cycle that allows providing the oxygen needed for combustion. In one of the reactors, named as fuel reactor, the fuel is introduced and combusted while the oxygen carrier reduction takes place. In the second reactor, named air reactor, the oxygen carrier is reoxidized in air. Different materials based on copper, nickel and iron oxides have been proposed as oxygen carriers for the CLC process. This work presents an environmental evaluation of the CLC process for natural gas based on Life Cycle Assessment (LCA). Five different oxygen carrier materials already tested in pilot plants were considered and the results compared to the conventional natural gas combustion in a gas turbine in a combined cycle without and with CO2 capture using postcombustion capture with amines. In view of the results, lower impact of the CLC process compared to the base case is expected without and with CO2 capture. The influence of several variables on the results was considered, such as temperature in the air reactor, lifetime of the oxygen carrier and possibility of recuperation of the depleted oxygen carrier. The nickel-based oxygen carriers were identified as the most adequate to be used in natural gas combustion. However, due to their toxicity, several analyses were also performed in order to identify improvements in the known oxygen carriers that can qualify them to replace nickel-based materials.
  • PublicationOpen Access
    Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen-methane mixtures
    (Elsevier, 2014) Diéguez Elizondo, Pedro; Urroz Unzueta, José Carlos; Marcelino Sádaba, Sara; Pérez Ezcurdia, Amaya; Benito Amurrio, Marta; Sáinz Casas, David; Gandía Pascual, Luis; Ingeniería; Ingeniaritza
    The use of hydrogen/methane mixtures with low methane contents as fuels for internal combustion engines (ICEs) may help to speed up the development of the hydrogen energy market and contribute to the decarbonization of the transportation sector. In this work, a commercial 1.4 L four-cylinder Volkswagen spark-ignition engine previously adapted to operate on pure hydrogen has been fueled with hydrogen/methane mixtures with 5–20 vol.% methane (29.6–66.7 wt.%). An experimental program has been executed by varying the fuel composition, air-to-fuel ratio (λ), spark advance and engine speed. A discussion of the results regarding the engine performance (brake torque, brake mean effective pressure, thermal efficiency) and emissions (nitrogen oxides, CO and unburned hydrocarbons) is presented. The results reveal that λ is the most influential variable on the engine behavior due to its marked effect on the combustion temperature. As far as relatively high values of λ have to be used to prevent knock, the effect on the engine performance is negative. In contrast, the specific emissions of nitrogen oxides decrease due to a reduced formation of thermal NOx. A clear positive effect of reducing the spark advance on the specific NOx emissions has been observed as well. As concerns CO and unburned hydrocarbons (HCs), their specific emissions increase with the methane content of the fuel mixture, as expected. However, they also increase as λ increases in spite of the lower fuel concentration due to a proportionally higher reduction of the power. Finally, the effect of the increase of the engine speed is positive on the CO and HCs emissions but negative on that of NOx due to improved mixing and higher temperature associated to intensified turbulence in the cylinders.
  • PublicationOpen Access
    Production of aromatic compounds by catalytic depolymerization of technical and downstream biorefinery lignins
    (MDPI, 2020) Cornejo Ibergallartu, Alfonso; Bimbela Serrano, Fernando; Moreira, Rui; Hablich Alvarracin, Karina Lissett; García Yoldi, Íñigo; Maisterra Udi, Maitane; Portugal, Antonio; Gandía Pascual, Luis; Martínez Merino, Víctor; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, PC036-037 Biovalorización; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from Populus salicaceae., Pinus radiata and Pinus pinaster from industrial wastes and biorefinery effluents were isolated and characterized. Lignin was depolymerized using homogenous (NaOH) and heterogeneous (Ni-, Cu-or Ni-Cu-hydrotalcites) base catalysis and catalytic hydrogenolysis using Ru/C. When homogeneous base catalyzed depolymerization (BCD) and Ru/C hydrogenolysis were combined on poplar lignin, the aromatics amount was ca. 11 wt.%. Monomer distributions changed depending on the feedstock and the reaction conditions. Aqueous NaOH produced cleavage of the alkyl side chain that was preserved when using modified hydrotalcite catalysts or Ru/C-catalyzed hydrogenolysis in ethanol. Depolymerization using hydrotalcite catalysts in ethanol produced monomers bearing carbonyl groups on the alkyl side chain. The analysis of the reaction mixtures was done by size exclusion chromatography (SEC) and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR).31P NMR and heteronuclear single quantum coherence spectroscopy (HSQC) were also used in this study. The content in poly-(hydroxy)-aromatic ethers in the reaction mixtures decreased upon thermal treatments in ethanol. It was concluded that thermo-solvolysis is key in lignin depolymerization, and that the synergistic effect of Ni and Cu provided monomers with oxidized alkyl side chains.
  • PublicationOpen Access
    Remarkable performance of supported Rh catalysts in the dry and combined reforming of biogas at high space velocities
    (Elsevier, 2024) Navarro Puyuelo, Andrea; Atienza Martínez, María; Reyero Zaragoza, Inés; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Dry and combined (with O2) reforming of synthetic biogas were studied at 700 °C using 0.5 % Rh catalysts prepared by impregnation on different supports: γ-Al2O3, SiO2, TiO2, ZrO2 and CeO2. Gas hourly space velocity (GHSV) was varied between 150 and 700 N L CH4/(gcat·h), and two O2/CH4 molar ratios of 0 and 0.12 were studied. Rh/Al2O3 catalysts (prepared using two different commercial supports here denoted as Sph and AA) presented the highest biogas conversion and syngas yields under both dry and combined reforming conditions. Catalytic activities were as follows: Rh/AA ≈ Rh/Sph > Rh/SiO2 > Rh/ZrO2 ≈ Rh/CeO2 > Rh/TiO2. The effect of catalysts’ calcination pre-treatment at relatively low (200 °C) and high temperatures (750 °C) was also studied. Calcination at high temperatures had a detrimental effect on both dry and combined reforming activities. However, a positive effect on the reforming activities and syngas yields was observed when the catalysts were calcined at 200 °C, especially under biogas combined reforming conditions: higher CH4 conversions and syngas yields could be achieved, as well as increasing CO2 conversions, though at the expense of lower H2/CO molar ratios.
  • PublicationOpen Access
    High power illumination system for uniform, isotropic and real time controlled irradiance in photoactivated processes research
    (Elsevier, 2024) Sáenz Gamasa, Carlos; Hernández Salueña, Begoña; Sanz Carrillo, Diego; Pellejero, Ismael; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2
    In the study of photocatalytic and photoactivated processes and devices a tight control on the illumination conditions is mandatory. The practical challenges in the determination of the necessary photonic quantities pose serious difficulties in the characterization of catalytic performance and reactor designs and configurations, compromising an effective comparison between different experiments. To overcome these limitations, we have designed and constructed a new illumination system based in the concept of the integrating sphere (IS). The system provides uniform and isotropic illumination on the sample, either in batch or continuous flow modes, being these characteristics independent of the sample geometry. It allows direct, non-contact and real time determination of the photonic quantities as well as versatile control on the irradiance values and its spectral characteristics. It can be also scaled up to admit samples of different sizes without affecting its operational behaviour. The performance of the IS system has been determined in comparison with a second illumination system, mounted on an optical bench, that provides quasi-parallel beam (QPB) nearly uniform illumination in tightly controlled conditions. System performance is studied using three sample geometries: a standard quartz cuvette, a thin straight tube and a microreactor by means of potassium ferrioxalate actinometry. Results indicate that the illumination geometry and the angular distribution of the incoming light greatly affect the absorption at the sample. The sample light absorption efficiency can be obtained with statistical uncertainties of about 3% and in very good agreement with theoretical estimations.
  • PublicationOpen Access
    CO2 methanation over nickel catalysts: support effects investigated through specific activity and operando IR spectroscopy measurement
    (MDPI, 2023) González Rangulan, Vigni Virginia; Reyero Zaragoza, Inés; Bimbela Serrano, Fernando; Romero Sarria, Francisca; Daturi, Marco:; Gandía Pascual, Luis; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex effects. The objective of this work was the study of the influence of the support with a series of catalysts supported on alumina, ceria, ceria–zirconia, and titania. Catalysts’ performance has been kinetically and spectroscopically evaluated over a wide range of temperatures (150–500 °C). The main results have shown remarkable differences among the catalysts as concerns Ni dispersion, metallic precursor reducibility, basic properties, and catalytic activity. Operando infrared spectroscopy measurements have evidenced the presence of almost the same type of adsorbed species during the course of the reaction, but with different relative intensities. The results indicate that using as support of Ni a reducible metal oxide that is capable of developing the basicity associated with medium-strength basic sites and a suitable balance between metallic sites and centers linked to the support leads to high CO2 methanation activity. In addition, the results obtained by operando FTIR spectroscopy suggest that CO2 methanation follows the formate pathway over the catalysts under consideration.
  • PublicationOpen Access
    Oxidative steam reforming of glycerol. A review
    (Elsevier, 2021) Moreira, Rui; Bimbela Serrano, Fernando; Gandía Pascual, Luis; Ferreira, Abel; Sánchez, José Luis; Portugal, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This review article presents the state-of-the-art on the catalytic oxidative steam reforming (OSR) of glycerol to produce syngas. Concerning the different technologies proposed for the catalytic OSR of glycerol, the following key points can be highlighted: (1) the robustness is much higher than other reforming technologies, (2) several catalysts can work with low deactivation, some of which can recover almost full activity by suitable regeneration, (3) syngas production by catalytic OSR of glycerin is higher than with concurrent technologies, (4) their scaling-up remains an unrealized task, (5) the thermodynamics of the process has been sufficiently covered in the literature, (6) there is a significant lack of kinetic and mechanistic studies that could help gaining deeper insight on the process, (7) novel concepts and reactor designs must be proposed for their development at larger scales, (8) new catalyst formulations must be developed for attaining higher resistance against oxidation and (9) process intensification could help developing them at larger scales.
  • PublicationOpen Access
    Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures
    (Elsevier, 2017) Castedo, Alejandra; Uriz Doray, Irantzu; Soler, Lluís; Gandía Pascual, Luis; Llorca Piqué, Jordi; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2; Química Aplicada
    Silicone microreactors containing microchannels of 500 μm width in a single or triple stack configuration have been manufactured, coated with an Au/TiO2 photocatalyst and tested for the photocatalytic production of hydrogen from water-ethanol gaseous mixtures under UV irradiation. Computational fluid dynamics (CFD) simulations have revealed that the design of the distributing headers allowed for a homogeneous distribution of the gaseous stream within the channels of the microreactors. A rate equation for the photocatalytic reaction has been developed from the experimental results obtained with the single stack operated under different ethanol partial pressures, light irradiation intensities and contact times. The hydrogen photoproduction rate has been expressed in terms of a Langmuir-Hinshelwood-type equation that accurately describes the process considering that hydrogen is produced through the dehydrogenation of ethanol to acetaldehyde. This equation incorporates an apparent rate constant (kapp) that has been found to be proportional to the intrinsic kinetic rate constant (k), and that depends on the light intensity (I) as follows: kapp = k·I0.65. A three-dimensional isothermal CFD model has been developed in which the previously obtained kinetic equation has been implemented. The model adequately describes the production of hydrogen of both the single and triple stacks. Moreover, the specific hydrogen productions (i.e. per gram of catalyst) are very close for both stacks thus suggesting that the scaling-up of the process could be accomplished by simply numbering-up. However, small deviations between the experimental and predicted hydrogen production suggest that a fraction of the radiation is absorbed by the microreactor components which should be taken into account for scaling-up purposes.
  • PublicationOpen Access
    Influence of the power supply on the energy efficiency of an alkaline water electrolyser
    (Elsevier, 2009) Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Gubía Villabona, Eugenio; Gandía Pascual, Luis; Diéguez Elizondo, Pedro; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza; Química Aplicada; Kimika Aplikatua; Gobierno de Navarra / Nafarroako Gobernua
    Electric energy consumption represents the greatest part of the cost of the hydrogen produced by water electrolysis. An effort is being carried out to reduce this electric consumption and improve the global efficiency of commercial electrolysers. Whereas relevant progresses are being achieved in cell stack configurations and electrodes performance, there are practically no studies on the effect of the electric power supply topology on the electrolyser energy efficiency. This paper presents an analysis on the energy consumption and efficiency of a 1 N m3 h1 commercial alkaline water electrolyser and their dependence on the power supply topology. The different topologies of power supplies are first summarised, analysed and classified into two groups: thyristor-based (ThPS) and transistor-based power supplies (TrPS). An Electrolyser Power Supply Emulator (EPSE) is then designed, developed and satisfactorily validated by means of simulation and experimental tests. With the EPSE, the electrolyser is characterised both obtaining its I–V curves for different temperatures and measuring the useful hydrogen production. The electrolyser is then supplied by means of two different emulated electric profiles that are characteristic of typical ThPS and TrPS. Results show that the cell stack energy consumption is up to 495 W h N m3 lower when it is supplied by the TrPS, which means 10% greater in terms of efficiency.