Lafuente López, Julio

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Lafuente López

First Name

Julio

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 9 of 9
  • PublicationOpen Access
    Funciones de agregación inspiradas en la integral Choquet
    (CAEPIA, 2024) Bustince Sola, Humberto; Lafuente López, Julio; González García, Xabier; Pereira Dimuro, Graçaliz; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    En este trabajo presentamos una nueva clase de funciones de agregación. Para la definición de estas nuevas funciones nos inspiramos en el método de construcción de las integrales Choquet, reemplazando las medidas por funciones adecuadas. Tras discutir la definición de las nuevas funciones, estudiamos algunas de su propiedades básicas y consideramos su relación con otras funciones de agregación utilizadas en la literatura, como los estadísticos de orden o las funciones de overlap y grouping.
  • PublicationOpen Access
    Some properties and construction methods for ordered directionally monotone functions
    (IEEE, 2017-08-24) Sesma Sara, Mikel; Marco Detchart, Cedric; Bustince Sola, Humberto; Barrenechea Tartas, Edurne; Lafuente López, Julio; Kolesárová, Anna; Mesiar, Radko; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    In this work we propose a new generalization of the notion of monotonicity, the so-called ordered directionally monotonicity. With this new notion, the direction of increasingness or decreasingness at a given point depends on that specific point, so that it is not the same for every value on the domain of the considered function.
  • PublicationOpen Access
    Directions of directional, ordered directional and strengthened ordered directional increasingness of linear and ordered linear fusion operators
    (IEEE, 2019) Sesma Sara, Mikel; Marco Detchart, Cedric; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work we discuss the forms of monotonicity that have been recently introduced to relax the monotonicity condition in the definition of aggregation functions. We focus on directional, ordered directional and strengthened ordered directional monotonicity, study their main properties and provide some results about their links and relations among them. We also present two families of functions, the so-called linear fusion functions and ordered linear fusion functions and we study the set of directions for which these types of functions are directionally, ordered directionally and strengthened ordered directionally increasing. In particular, OWA operators are an example of ordered linear fusion functions.
  • PublicationOpen Access
    Strengthened ordered directional and other generalizations of monotonicity for aggregation functions
    (Springer, 2018) Sesma Sara, Mikel; Miguel Turullols, Laura de; Lafuente López, Julio; Barrenechea Tartas, Edurne; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    A tendency in the theory of aggregation functions is the generalization of the monotonicity condition. In this work, we examine the latest developments in terms of different generalizations. In particular, we discuss strengthened ordered directional monotonicity, its relation to other types of monotonicity, such as directional and ordered directional monotonicity and the main properties of the class of functions that are strengthened ordered directionally monotone. We also study some construction methods for such functions and provide a characterization of usual monotonicity in terms of these notions of monotonicity.
  • PublicationOpen Access
    Curve-based monotonicity: a generalization of directional monotonicity
    (Taylor & Francis, 2019) Roldán López de Hierro, Antonio Francisco; Sesma Sara, Mikel; Špirková, Jana; Lafuente López, Julio; Pradera, Ana; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work we propose a generalization of the notion of directional monotonicity. Instead of considering increasingness or decreasingness along rays, we allow more general paths defined by curves in the n-dimensional space. These considerations lead us to the notion of α-monotonicity, where α is the corresponding curve. We study several theoretical properties of α-monotonicity and relate it to other notions of monotonicity, such as weak monotonicity and directional monotonicity.
  • PublicationEmbargo
    Degree of totalness: how to choose the best admissible permutation for vector fuzzy integration
    (Elsevier, 2023-08-30) Ferrero Jaurrieta, Mikel; Horanská, Lubomíra; Lafuente López, Julio; Mesiar, Radko; Pereira Dimuro, Graçaliz; Takáč, Zdenko; Gómez Fernández, Marisol; Fernández Fernández, Francisco Javier; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    The use of aggregation operators that require ordering of the data brings a problem when the structures to be aggregated are multi-valued, since there may be several admissible orders. To addressing this problem, the concept of admissible permutation was introduced for intervals. In this paper we extend this concept to vector domain. However, the problem of selecting the best possible permutation is still an open problem. In this paper we present a novel concept in order to choose the best admissible permutation for vectors: the degree of totalness. This concept allows us to represent to which degree the admissible permutation reorder given vectors as a chain with respect to the partial order. Finally, from the best admissible permutation we construct the Choquet integral.
  • PublicationOpen Access
    A new family of aggregation functions for intervals
    (Springer, 2024) Díaz-Vázquez, Susana; Torres-Manzanera, Emilio; Rico, Noelia; Mesiar, Radko; Rodríguez Martínez, Iosu; Lafuente López, Julio; Díaz, Irene; Montes Rodríguez, Susana; Bustince Sola, Humberto; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Aggregation operators are unvaluable tools when different pieces of information have to be taken into account with respect to the same object. They allow to obtain a unique outcome when different evaluations are available for the same element/object. In this contribution we assume that the opinions are not given in form of isolated values, but intervals. We depart from two “classical” aggregation functions and define a new operator for aggregating intervals based on the two original operators. We study under what circumstances this new function is well defined and we provide a general characterization for monotonicity. We also study the behaviour of this operator when the departing functions are the most common aggregation operators. We also provide an illustrative example demonstrating the practical application of the theoretical contribution to ensemble deep learning models.
  • PublicationOpen Access
    Strengthened ordered directionally monotone functions. Links between the different notions of monotonicity
    (Elsevier, 2019) Sesma Sara, Mikel; Lafuente López, Julio; Roldán López de Hierro, Antonio Francisco; Mesiar, Radko; Bustince Sola, Humberto; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas
    In this work, we propose a new notion of monotonicity: strengthened ordered directional monotonicity. This generalization of monotonicity is based on directional monotonicity and ordered directional monotonicity, two recent weaker forms of monotonicity. We discuss the relation between those different notions of monotonicity from a theoretical point of view. Additionally, along with the introduction of two families of functions and a study of their connection to the considered monotonicity notions, we define an operation between functions that generalizes the Choquet integral and the Lukasiewicz implication.
  • PublicationOpen Access
    Ordered directional monotonicity in the construction of edge detectors
    (Elsevier, 2021) Marco Detchart, Cedric; Bustince Sola, Humberto; Fernández Fernández, Francisco Javier; Mesiar, Radko; Lafuente López, Julio; Barrenechea Tartas, Edurne; Pintor Borobia, Jesús María; Estatistika, Informatika eta Matematika; Ingeniaritza; Institute of Smart Cities - ISC; Estadística, Informática y Matemáticas; Ingeniería
    In this paper we provide a specific construction method of ordered directionally monotone functions. We show that the functions obtained with this construction method can be used to build edge detectors for grayscale images. We compare the results of these detectors to those obtained with some other ones that are widely used in the literature. Finally, we show how a consensus edge detector can be built improving the results obtained both by our proposal and by those in the literature when applied individually.