López Martín, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Martín
First Name
Antonio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
26 results
Search Results
Now showing 1 - 10 of 26
Publication Open Access AC coupled amplifier with a resistance multiplier technique for ultra-low frequency operation(Elsevier, 2022) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Carlosena García, Alfonso; López Martín, Antonio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper proposes a novel, tunable AC coupled capacitive feedback amplifier, exhibiting an ultra-low high pass corner frequency. This is accomplished by actively boosting the output resistive value of a MOS transistor in weak inversion. The circuit is based on a more general architecture, recently proposed by the authors, and is analyzed in terms of its capability to achieve ultra-low frequency operation, its DC performance, and noise. The proposed technique is demonstrated via measurement results from a fabricated test chip prototype using a standard 0.18 µm CMOS technology. The proposed amplifier provides a tunable high pass corner frequency from 20 mHz to 475 mHz, consuming 4.71 μW and a total area of 0.069 mm2.Publication Open Access Gain-boosted super class AB OTAs based on nested local feedback(IEEE, 2021) Beloso Legarra, Javier; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Ramírez-Angulo, Jaime; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaA new approach to design super class AB operational transcon-ductance amplifiers (OTAs) with enhanced large-signal and small-signal performance is presented. It is based on employing two nested positive and negative feedback loops at the active load of an adaptively biased differential pair in weak inversion region. As a result, DC gain, gain-bandwidth product, settling time and noise are improved compared to conventional super class AB OTAs without extra circuit nodes or power consumption. Measurement results of a 180 nm CMOS test chip prototype show a current boosting factor higher than 5000 and a nearly ideal current efficiency. Due to the ultra-low quiescent currents and high driving capability, the circuit exhibits an excellent large-signal figure-of-merit (FOML) of 236 V-1. To illustrate the applicability of the proposed approach, a differential sample-and-hold (S/H) circuit was designed and fabricated on the same test chip. Measurement results of the S/H validate the advantages of the proposal.Publication Open Access 1-V 15-μW 130-nm CMOS super class AB OTA(IEEE, 2020) López Martín, Antonio; Algueta-Miguel, Jose M.; Garde Luque, María Pilar; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCA super class AB recycling folded cascode amplifier in 130 nm CMOS is presented. It combines for the first time adaptive biasing of the differential input pair, nonlinear current mirrors with current starving and dynamic biasing of the cascode transistors in the output branch. Measurements using a ±0.5V supply show slew rate and gain bandwidth product improvement factors of 26 and 112 versus the conventional topology for the same bias currents, yielding the highest combined FoM to date.Publication Open Access Wide-swing class AB regulated cascode current mirror(IEEE, 2020) Garde Luque, María Pilar; López Martín, Antonio; Cruz Blas, Carlos Aristóteles de la; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCA micropower regulated cascode CMOS current mirror is presented, combining floating gate and quasi floating gate MOS transistors to achieve both wide swing and class AB operation, respectively. Measurement results for a 0.5 μm CMOS test chip prototype are included, showing that the current mirror can provide a THD at 100 kHz of -44 dB for a supply voltage of ±0.75 V and input current amplitudes 20 times larger than the bias current.Publication Open Access Single-stage class-AB non-linear current mirror OTA(IEEE, 2022) Beloso Legarra, Javier; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Institute of Smart Cities - ISCThe analysis, design and experimental characterization of a single-stage class-AB operational transconductance amplifier (OTA) with enhanced large- and small-signal performance is presented. The OTA is biased in weak inversion to save power and employs a non-linear current mirror as active load, leading a boosting current directly at the output branch. As a result, the amplifier's performance is improved without additional circuit elements and/or power consumption. A chip prototype has been fabricated in a 180-nm CMOS process, consuming a quiescent power of 2.5 µW from a supply voltage of ±0.5 V and a silicon area of 0.0013 mm 2 . For a load of 160 pF, it exhibits an average slew rate of 0.94 V/µs and a gain-bandwidth product of 22.1 kHz.Publication Open Access Two-stage OTA with all subthreshold MOSFETs and optimum GBW to DC-current ratio(IEEE, 2022) Beloso Legarra, Javier; Grasso, A.; López Martín, Antonio; Palumbo, Gaetano; Pennisi, Salvatore; Institute of Smart Cities - ISCAn approach for the design of two-stage classAB OTAs with sub-1µA current consumption is proposed and demonstrated. The approach employs MOS transistors operating in subthreshold and allows maximum gain-bandwidth product (GBW) to be achieved for a given DC current budget, by setting optimum distribution of DC currents in the two amplifier stages. Following this strategy, a class AB OTA was designed in a standard 0.5-µm CMOS technology supplied from 1.6-V and experimentally tested. Measured GBW was 307 kHz with 980-nA DC current consumption while driving an output capacitance of 40 pF with an average slew rate of 96 V/msPublication Open Access Super-gain-boosted AB-AB fully differential Miller op-amp with 156dB open-loop gain and 174MV/V MHZ pF/uW figure of merit in 130nm CMOS technology(IEEE, 2021) Paul, Anindita; Ramírez-Angulo, Jaime; Díaz Sánchez, Alejandro; López Martín, Antonio; González Carvajal, Ramón; Li, Frank X.; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónA fully differential Miller op-amp with a composite input stage using resistive local common-mode feedback and regulated cascode transistors is presented here. High gain pseudo-differential auxiliary amplifiers are used to implement the regulated cascode transistors in order to boost the output impedance of the composite input stage and the open-loop gain of the op-amp. Both input and output stages operate in class AB mode. The proposed op-amp has been simulated in a 130nm commercial CMOS process technology. It operates from a 1.2V supply and has a close to rail-to-rail differential output swing. It has 156dB DC open-loop gain and 63MHz gain-bandwidth product with a 30pF capacitive load. The op-amp has a DC open-loop gain figure of merit FOMAOLDC of 174 (MV/V) MHz pF/uW and large-signal figure of merit FOMLS of 3(V/us) pF/uW.Publication Open Access A 1.2-V current-mode RMS-to-DC converter based on a novel two-quadrant electronically simulated MOS translinear loop(IEEE, 2020) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Algueta-Miguel, Jose M.; López Martín, Antonio; Institute of Smart Cities - ISCA novel current-mode CMOS RMS-to-DC converter using translinear techniques is introduced. It is based on a squarer/divider cell that is implemented using an electronically simulated loop with a novel biasing scheme that allows its operation in two quadrants. The cell is designed using a differential input current and a small signal first order filter to implement the voltage averaging, leading to a compact solution that can be used with low voltage supplies. The converter has been fabricated in a standard 130-nm CMOS process, and measurement results are provided to demonstrate the feasibility of the system.Publication Open Access Super-gain-boosted miller op-amp based on nested regulated cascode techniques with FoMAOLDC =24,614kV/V.MHz.pF/µWatt(IEEE, 2020) Paul, Anindita; Ramírez-Angulo, Jaime; López Martín, Antonio; González Carvajal, Ramón; Díaz Sánchez, Alejandro; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA simple technique to greatly enhance the DC open-loop gain of a Miller op-amp is introduced here. It is based on the utilization of nested regulated cascode amplifiers. It uses conventional Miller compensation and does not increase the supply voltage. The proposed scheme has a DC open-loop gain Figure of Merit FoMAOLDC=24,614kV/V.pF.MHz/µWatt. It is especially appropriate for utilization in modern deep sub-micrometer CMOS technologies with low intrinsic gain.Publication Open Access Analog lock-in amplifier design using subsampling for accuracy enhancement in GMI sensor applications(MDPI, 2023) Algueta-Miguel, Jose M.; Beato López, Juan Jesús; López Martín, Antonio; Ciencias; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2005A frequency downscaling technique for enhancing the accuracy of analog lock-in amplifier (LIA) architectures in giant magneto-impedance (GMI) sensor applications is presented in this paper. As a proof of concept, the proposed method is applied to two different LIA topologies using, respectively, analog and switching-based multiplication for phase-sensitive detection. Specifically, the operation frequency of both the input and the reference signals of the phase-sensitive detector (PSD) block of the LIA is reduced through a subsampling process using sample-and-hold (SH) circuits. A frequency downscaling from 200 kHz, which is the optimal operating frequency of the employed GMI sensor, to 1 kHz has been performed. In this way, the proposed technique exploits the inherent advantages of analog signal multiplication at low frequencies, while the principle of operation of the PSD remains unaltered. The circuits were assembled using discrete components, and the frequency downscaling proposal was experimentally validated by comparing the measurement accuracy with the equivalent conventional circuits. The experimental results revealed that the error in the signal magnitude measurements was reduced by a factor of 8 in the case of the analog multipliers and by a factor of 21 when a PSD based on switched multipliers was used. The error in-phase detection using a two-phase LIA was also reduced by more than 25%.
- «
- 1 (current)
- 2
- 3
- »