López Martín, Antonio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López Martín
First Name
Antonio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
45 results
Search Results
Now showing 1 - 10 of 45
Publication Open Access AC coupled amplifier with a resistance multiplier technique for ultra-low frequency operation(Elsevier, 2022) Martincorena Arraiza, Maite; Cruz Blas, Carlos Aristóteles de la; Carlosena García, Alfonso; López Martín, Antonio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis paper proposes a novel, tunable AC coupled capacitive feedback amplifier, exhibiting an ultra-low high pass corner frequency. This is accomplished by actively boosting the output resistive value of a MOS transistor in weak inversion. The circuit is based on a more general architecture, recently proposed by the authors, and is analyzed in terms of its capability to achieve ultra-low frequency operation, its DC performance, and noise. The proposed technique is demonstrated via measurement results from a fabricated test chip prototype using a standard 0.18 µm CMOS technology. The proposed amplifier provides a tunable high pass corner frequency from 20 mHz to 475 mHz, consuming 4.71 μW and a total area of 0.069 mm2.Publication Open Access Enhanced single-stage folded cascode OTA suitable for large capacitive loads(IEEE, 2018) López Martín, Antonio; Garde Luque, María Pilar; Algueta-Miguel, Jose M.; Cruz Blas, Carlos Aristóteles de la; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCAn enhanced single-stage folded cascode operational transconductance amplifier able to drive large capacitive loads is presented. Circuits that adaptively bias the input differential pair and the current folding stage are employed, which provide class AB operation with dynamic current boosting and increased gainbandwidth (GBW) product. Measurement results of a test chip prototype fabricated in a 0.5-µm CMOS process show an increase in slew rate and GBW by a factor of 30 and 15, respectively, versus the class A version using the same supply voltage and bias currents. Overhead in other performance metrics is small.Publication Open Access Design of low-cost smart accelerometers(Universitat Politècnica de Catalunya, 2005) Carlosena García, Alfonso; López Martín, Antonio; Massarotto, Marco; Cruz Blas, Carlos Aristóteles de la; Lecumberri Villamediana, Pablo; Gómez Fernández, Marisol; Pintor Borobia, Jesús María; Gárriz Sanz, Sergio; Ingeniería Eléctrica y Electrónica; Matemáticas; Ingeniería Mecánica, Energética y de Materiales; Ingeniaritza Elektrikoa eta Elektronikoa; Matematika; Mekanika, Energetika eta Materialen IngeniaritzaThe goal of this project is to design a low-cost smart accelerometer, making use of a piezoelectric element as basic sensing material, and adding a mixed-mode conditioning circuit.Publication Open Access CMOS first-order all-pass filter with 2-Hz pole frequency(IEEE, 2019) Paul, Anindita; Ramírez-Angulo, Jaime; López Martín, Antonio; González Carvajal, Ramón; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA CMOS fully integrated all-pass filter with an extremely low pole frequency of 2 Hz is introduced in this paper. It has 0.08-dB passband ripple and 0.029-mm2 Si area. It has 0.38-mW power consumption in strong inversion with ±0.6-V power supplies. In subthreshold, it has 0.64-uW quiescent power and operates with ±200-mV dc supplies. Miller multiplication is used to obtain a large equivalent capacitor without excessive Si area. By varying the gain of the Miller amplifier, the pole frequency can be varied from 2 to 48 Hz. Experimental and simulation results of a test chip prototype in 130-nm CMOS technology validate the proposed circuit.Publication Open Access Gain-boosted super class AB OTAs based on nested local feedback(IEEE, 2021) Beloso Legarra, Javier; Cruz Blas, Carlos Aristóteles de la; López Martín, Antonio; Ramírez-Angulo, Jaime; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaA new approach to design super class AB operational transcon-ductance amplifiers (OTAs) with enhanced large-signal and small-signal performance is presented. It is based on employing two nested positive and negative feedback loops at the active load of an adaptively biased differential pair in weak inversion region. As a result, DC gain, gain-bandwidth product, settling time and noise are improved compared to conventional super class AB OTAs without extra circuit nodes or power consumption. Measurement results of a 180 nm CMOS test chip prototype show a current boosting factor higher than 5000 and a nearly ideal current efficiency. Due to the ultra-low quiescent currents and high driving capability, the circuit exhibits an excellent large-signal figure-of-merit (FOML) of 236 V-1. To illustrate the applicability of the proposed approach, a differential sample-and-hold (S/H) circuit was designed and fabricated on the same test chip. Measurement results of the S/H validate the advantages of the proposal.Publication Open Access Class AB amplifier with enhanced slew rate and GBW(John Wiley & Sons, 2019) Garde Luque, María Pilar; López Martín, Antonio; Algueta-Miguel, Jose M.; Ramírez-Angulo, Jaime; González Carvajal, Ramón; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThe design of a micropower class AB operational transconductance amplifier with large dynamic current to quiescent current ratio is addressed. It is based on a compact and power-efficient adaptive biasing circuit and a class AB current follower using the Quasi-Floating Gate (QFG) technique. The amplifier has been designed and fabricated in a 0.5 um CMOS process. Simulation and measurement results show a slew rate (SR) improvement factor versus the class A version larger than 4 for the same supply voltage and bias currents, as well as enhanced small-signal performance.Publication Open Access 1-V 15-μW 130-nm CMOS super class AB OTA(IEEE, 2020) López Martín, Antonio; Algueta-Miguel, Jose M.; Garde Luque, María Pilar; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Institute of Smart Cities - ISCA super class AB recycling folded cascode amplifier in 130 nm CMOS is presented. It combines for the first time adaptive biasing of the differential input pair, nonlinear current mirrors with current starving and dynamic biasing of the cascode transistors in the output branch. Measurements using a ±0.5V supply show slew rate and gain bandwidth product improvement factors of 26 and 112 versus the conventional topology for the same bias currents, yielding the highest combined FoM to date.Publication Open Access A highly efficient composite class-AB–AB Miller op-amp with high gain and stable from 15 pF up to very large capacitive loads(IEEE, 2018) Pourashraf, Shirin; Ramírez-Angulo, Jaime; López Martín, Antonio; González Carvajal, Ramón; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper, a highly power-efficient class-AB–AB Miller op-amp is discussed. The structure uses gm enhancement based on local common-mode feedback to provide class-AB operation with enhanced effective gm , open-loop gain, unity-gain frequency, and slew rate ( SR ) without significant increase in quiescent power consumption. Utilization of a nonlinear load leads to large symmetric positive and negative SRs . Stability over an extremely wide range of capacitive loads is achieved through a combination of Miller and phase-lead compensations. The unity-gain frequency does not show sensitivity to capacitive load values. A test chip prototype fabricated in 0.18- μm CMOS technology shows 90.8-dB open-loop gain, 12.5-MHz bandwidth for a 25-pF load capacitance, and a factor 60 SR enhancement with maximum output current close to 1-mA and 43- μA total static current.Publication Open Access Folded Cascode OTA with 5540 MHzpF/mA FoM(IEEE, 2018) Garde Luque, María Pilar; López Martín, Antonio; Carvajal, Ramón G.; Ramírez-Angulo, Jaime; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA micropower single-stage folded cascode amplifier able to drive a wide range of capacitive loads is presented. It features class AB operation and includes power-efficient adaptive biasing techniques, which provide enhanced dynamic output current boosting and gain-bandwidth product (GBW). Phase lead compensation is used to improve phase margin and settling performance for low capacitive loads. Measurement results for a 0.5 μm CMOS process show a FoM of 5540 MHz pF/mA, the highest one reported to date for a folded cascode amplifier to the authors' knowledge.Publication Open Access Subsampling OFDM-based ultrasonic data communication through metallic channels for monitoring of cargo containers(IEEE, 2019) García Oya, José Ramón; Algueta-Miguel, Jose M.; García Doblado, José; Muñoz Chavero, Fernando; Hidalgo Fort, Eduardo; Baena Lecuyer, Vicente; López Martín, Antonio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónAn enhanced ultrasonic communication system based on piezoelectric transducers for monitoring of goods in cargo containers is presented. The proposed system consists of several sensors placed inside the container, whose data are collected and transmitted outside it. Data transmission is carried out by an ultrasonic communication channel, in order to avoid drilling the wall of the container. The proposed data communication system is based on the transmission of a 128-OFDM signal. This modulation has been chosen due to its robustness to channels with frequency-selective fading and its spectrum efficiency. In order to increase the signal bandwidth and to reduce the power consumption at the internal node (transmitter), the proposed system exploits the non-linearity of the metallic channel to transmit at higher resonance frequencies. Moreover, power consumption at the external node (receiver) is reduced by using a subsampling based receiver, which allows its implementation by low-cost electronics.