Person:
Goicoechea Fernández, Javier

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Goicoechea Fernández

First Name

Javier

person.page.departamento

ORCID

0000-0001-5891-1446

person.page.upna

6995

Name

Search Results

Now showing 1 - 10 of 37
  • PublicationOpen Access
    Hg2+ optical fiber sensor based on LSPR generated by gold nanoparticles embedded in LBL nano-assembled coatings
    (MDPI, 2019) Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Mercury is an important contaminant since it is accumulated in the body of living beings, and very small concentrations are very dangerous in the long term. This paper reports the fabrication of a highly sensitive fiber optic sensor using the layer-by-layer nano-assembly technique with gold nanoparticles (AuNPs). The gold nanoparticles were obtained via a water-based synthesis route that use poly acrylic acid (PAA) as stabilizing agent, in the presence of a borane dimethylamine complex (DMAB) as reducing agent, giving PAA-capped AuNPs. The sensing mechanism is based on the alteration of the Localized Surface Plasmon Resonances (LSPR) generated by AuNPs thanks to the strong chemical affinity of metallic mercury towards gold, which lead to amalgam alloys.
  • PublicationOpen Access
    Humidity sensor based on a long-period fiber grating coated with a hydrophobic thin film
    (2010) Urrutia Azcona, Aitor; Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In this work it is proposed a novel fiber optic humidity sensor based on a functionally coated long-period fiber grating (LPG). The coating is composed of tetraorthosilicate matrix functionalized with perfluorooctyltriethoxysilane and its fabrication was performed by the sol-gel technique using a dip coating process using the LPG as substrate. This technique allows to fabricate sensitive films in a fast and simple way compared to other overlay fabrication techniques. The fabricated sensor was tested in a programmable temperature and climatic chamber. Relative humidity (RH) was varied in range from 20%RH to 80%RH at room temperature. The results showed a smooth exponential-like wavelength shift of the LPG attenuation band.
  • PublicationOpen Access
    In situ synthesis of gold nanoparticles in layer-b y-layer polymeric coatings for the fabrication of optical fiber sensors
    (MDPI, 2022) Martínez Hernández, María Elena; Goicoechea Fernández, Javier; Rivero Fuente, Pedro J.; Arregui San Martín, Francisco Javier; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación
    A new method is proposed to tune the interferometric response of wavelength-based optical fiber sensors. Using the nanoparticle in situ synthesis (ISS) technique, it is possible to synthesize gold nanoparticles (AuNPs) within a pre-existing polymeric thin film deposited at the end-face of an optical fiber. This post-process technique allows us to adjust the optical response of the device. The effect of the progressive synthesis of AuNPs upon polymeric film contributed to a remarkable optical contrast enhancement and a very high tuning capability of the reflection spectra in the visible and near-infrared region. The spectral response of the sensor to relative humidity (RH) variations was studied as a proof of concept. These results suggest that the ISS technique can be a useful tool for fiber optic sensor manufacturing.
  • PublicationOpen Access
    Study and optimization of self-assembled polymeric multilayer structures with neutral red for pH sensing applications
    (Hindawi / Wiley, 2008) Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL) structures fabricated using poly(allylamine hydrochloride) (PAH) and Neutral Red (NR) as cations, and poly(acrylic acid) (PAA) as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA) LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM) are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.
  • PublicationOpen Access
    Layer-by-layer nano-assembly: a powerful tool for optical fiber sensing applications
    (MDPI, 2019) Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación
    The ability to tune the composition of nanostructured thin films is a hot topic for the design of functional coatings with advanced properties for sensing applications. The control of the structure at the nanoscale level enables an improvement of intrinsic properties (optical, chemical or physical) in comparison with the traditional bulk materials. In this sense, among all the known nanofabrication techniques, the layer-by-layer (LbL) nano-assembly method is a flexible, easily-scalable and versatile approach which makes possible precise control of the coating thickness, composition and structure. The development of sensitive nanocoatings has shown an exceptional growth in optical fiber sensing applications due to their self-assembling ability with oppositely charged components in order to obtain a multilayer structure. This nanoassembly technique is a powerful tool for the incorporation of a wide variety of species (polyelectrolytes, metal/metal oxide nanoparticles, hybrid particles, luminescent materials, dyes or biomolecules) in the resultant multilayer structure for the design of high-performance optical fiber sensors. In this work we present a review of applications related to optical fiber sensors based on advanced LbL coatings in two related research areas of great interest for the scientific community, namely chemical sensing (pH, gases and volatile organic compounds detection) as well as biological/biochemical sensing (proteins, immunoglobulins, antibodies or DNA detection).
  • PublicationOpen Access
    Photonic crystal fiber temperature sensor based on quantum dot nanocoatings
    (Hindawi / Wiley, 2009) Larrión Zabaleta, Beatriz; Hernáez Sáenz de Zaitigui, Miguel; Arregui San Martín, Francisco Javier; Goicoechea Fernández, Javier; Bravo Larrea, Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Quantum dot nanocoatings have been deposited by means of the Layer-by-Layer technique on the inner holes of Photonic Crystal Fibers (PCFs) for the fabrication of temperature sensors. The optical properties of these sensors including absorbance, intensity emission, wavelength of the emission band, and the full width at half maximum (FWHM) have been experimentally studied for a temperature range from -40 to 70ºC.
  • PublicationOpen Access
    Sensitivity improvement of a humidity sensor based on silica nanospheres on a long-period fiber grating
    (MDPI, 2009) Viegas, Diana; Goicoechea Fernández, Javier; Santos, José Luís; Araújo, Francisco Moita; Ferreira, Luis Alberto; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    This work addresses a new configuration that improves the sensitivity of a humidity sensor based on a long-period fiber grating coated with a SiO(2)-nanospheres film. An intermediate higher refractive index overlay, deposited through Electrostatic Self-Assembly, is placed between the fiber cladding and the humidity sensitive film in order to increase the total effective refractive index of the coating. With this intermediate design, a three-fold improvement in the sensitivity was obtained. Wavelength shifts up to 15 nm against 5 nm were achieved in a humidity range from 20% to 80%.
  • PublicationOpen Access
    Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating
    (Elsevier, 2016) Urrutia Azcona, Aitor; Goicoechea Fernández, Javier; Ricchiuti, Amelia L.; Barrera, D.; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    A humidity and temperature optical fiber sensor based on a long-period grating (LPG), which can provide simultaneous response to both magnitudes, is proposed and demonstrated via experiments. Previously, the LPG was fully coated with humidity sensitive nanostructured polymeric thin films by the Layer-by-Layer (LbL) nano assembly technique. Hence the surrounding refractive index was changed, so provoking wavelength shifts of the attenuation bands of the transmission spectrum. This fully coated LPG was exposed to relative humidity (RH) and temperature tests, varying from 20% to 80% RH and from 25 to 85 °C, respectively. Then, half of the LPG coating was chemically removed and this results in the splitting of the main attenuation band into two different contributions. When this semi-coated LPG was also exposed to RH and temperature tests, the new two attenuation bands presented different behaviors for humidity and temperature. This novel dual-wavelength based sensing method enables the simultaneous measurement of RH and temperature using only one LPG.
  • PublicationOpen Access
    Optical sensors based on lossy-mode resonances
    (Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC