Insausti Barrenetxea, Kizkitza
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Insausti Barrenetxea
First Name
Kizkitza
person.page.departamento
Agronomía, Biotecnología y Alimentación
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
5 results
Search Results
Now showing 1 - 5 of 5
Publication Open Access Imágenes hiperespectrales como herramienta no destructiva para evaluar la calidad de la carne y de los productos cárnicos(Estrategias alimentarias, 2023) León Ecay, Sara; Insausti Barrenetxea, Kizkitza; López Maestresalas, Ainara; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaApostar por la digitalización del sector cárnico resulta imprescindible para mantener su competitividad. Por ello, es preciso introducir nuevas tecnologías emergentes no destructivas, objetivas y rápidas que puedan satisfacer las necesidades básicas de las modernas plantas de procesado de alimentos. En este artículo, se muestran diferentes aplicaciones de técnicas espectroscópicas haciendo especial hincapié en las imágenes hiperespectrales a través de un caso práctico.Publication Open Access Detection of minced lamb and beef fraud using NIR spectroscopy(Elsevier, 2019) López Maestresalas, Ainara; Insausti Barrenetxea, Kizkitza; Jarén Ceballos, Carmen; Pérez Roncal, Claudia; Urrutia Vera, Olaia; Beriain Apesteguía, María José; Arazuri Garín, Silvia; Ingeniaritza; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe aim of this work was to investigate the feasibility of near-infrared spectroscopy (NIRS), combined with chemometric techniques, to detect fraud in minced lamb and beef mixed with other types of meats. For this, 40 samples of pure lamb and 30 samples of pure beef along with 160 samples of mixed lamb and 156 samples of mixed beef at different levels: 1-2-5-10% (w/w) were prepared and analyzed. Spectral data were pre-processed using different techniques and explored by a Principal Component Analysis (PCA) to find out differences among pure and mixed samples. Moreover, a PLS-DA was carried out for each type of meat mixture. Classification results between 78.95 and 100% were achieved for the validation sets. Better rates of classification were obtained for samples mixed with pork meat, meat of Lidia breed cattle and foal meat than for samples mixed with chicken in both lamb and beef. Additionally, the obtained results showed that this technology could be used for detection of minced beef fraud with meat of Lidia breed cattle and foal in a percentage equal or higher than 2 and 1%, respectively. Therefore, this study shows the potential of NIRS combined with PLS-DA to detect fraud in minced lamb and beef.Publication Embargo Using portable visible and near-infrared spectroscopy to authenticate beef from grass, barley, and corn-fed cattle(Elsevier, 2024-12-01) León Ecay, Sara; López-Campos, Óscar; López Maestresalas, Ainara; Insausti Barrenetxea, Kizkitza; Schmidt, Bryden; Prieto, Nuria; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako GobernuaMeat product labels including information on livestock production systems are increasingly demanded, as consumers request total traceability of the products. The aim of this study was to explore the potential of visible and near-infrared spectroscopy (Vis-NIRS) to authenticate meat and fat from steers raised under different feeding systems (barley, corn, grass-fed). In total, spectra from 45 steers were collected (380-2,500 nm) on the subcutaneous fat and intact longissimus thoracis (LT) at 72 h postmortem and, after fabrication, on the frozen-thawed ground longissimus lumborum (LL). In subcutaneous fat samples, excellent results were obtained using partial least squares-discriminant analysis (PLS-DA) with the 100 % of the samples in external Test correctly classified (Vis, NIR or Vis-NIR regions); whereas linear-support vector machine (L-SVM) discriminated 75-100 % in Test (Vis-NIR range). In intact meat samples, PLS-DA segregated 100 % of the samples in Test (Vis-NIR region). A slightly lower percentage of meat samples were correctly classified by L-SVM using the NIR region (75-100 % in Train and Test). For ground meat, 100 % of correctly classified samples in Test was achieved using Vis, NIR or Vis-NIR spectral regions with PLS-DA and the Vis with L-SVM. Variable importance in projection (VIP) reported the influence of fat and meat pigments as well as fat, fatty acids, protein, and moisture absorption for the discriminant analyses. From the results obtained with the animals and diets used in this study, NIRS technology stands out as a reliable and green analytical tool to authenticate fat and meat from different livestock production systems.Publication Open Access Combination of spectral and textural features of hyperspectral imaging for the authentication of the diet supplied to fattening cattle(Elsevier, 2024) León Ecay, Sara; Insausti Barrenetxea, Kizkitza; Arazuri Garín, Silvia; Goenaga Uceda, Irantzu; López Maestresalas, Ainara; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Ingeniería; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study explored the potential of hyperspectral imaging in the near infrared region (NIR-HSI) as a non-destructive and rapid tool to discriminate among two beef fattening diets. For that purpose, a feeding trial was carried out with a total of 24 purebred Pirenaica calves. Twelve of them were fed barley and straw (BS) while 11 animals were finished on vegetable by-products (VBPR). When comparing the reference measurements of the meat coming from those animals, only the total collagen ratio expressed the feeding effect (p-value<0.05). To undertake the authentication procedure, two discrimination approaches were run: partial least squares discriminant analysis (PLS-DA) and radial basis function-support vector machine (RBF-SVM). To precisely extract spectral and textural information from the lean portion of the meat steaks, various techniques were executed, such as principal component (PC) images, competitive adaptive reweighted sampling (CARS) for selecting optimal wavelengths, and gray-level-co-occurrence matrix (GLCM). After hyperspectral imaging and the combination of their own texture features, samples were classified according to feeding diet with an overall accuracy of 72.92% for PLS-DA and 80.56% for RBF-SVM. So, the potential of using HSI technology to authenticate the meat obtained from beef supplied a diet based on circular economy techniques was made in evidence.Publication Open Access Classification of beef longissimus thoracis muscle tenderness using hyperspectral imaging and chemometrics(MDPI, 2022) León Ecay, Sara; López Maestresalas, Ainara; Murillo Arbizu, María Teresa; Beriain Apesteguía, María José; Mendizábal Aizpuru, José Antonio; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Bass, Phillip D.; Colle, Michael J.; García, David; Romano Moreno, Miguel; Insausti Barrenetxea, Kizkitza; Agronomia, Bioteknologia eta Elikadura; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Agronomía, Biotecnología y Alimentación; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua Universidad Pública de Navarra / Nafarroako UnibertsitateNowadays, the meat industry requires non-destructive, sustainable, and rapid methods that can provide objective and accurate quality assessment with little human intervention. Therefore, the present research aimed to create a model that can classify beef samples from longissimus thoracis muscle according to their tenderness degree based on hyperspectral imaging (HSI). In order to obtain different textures, two main strategies were used: (a) aging type (wet and dry aging with or without starters) and (b) aging times (0, 7, 13, 21, and 27 days). Categorization into two groups was carried out for further chemometric analysis, encompassing group 1 (ngroup1 = 30) with samples with WBSF < 53 N whereas group 2 (ngroup2 = 28) comprised samples with WBSF values 53 N. Then, classification models were created by applying the partial least squares discriminant analysis (PLS-DA) method. The best results were achieved by combining the following pre-processing algorithms: 1st derivative + mean center, reaching 70.83% of correctly classified (CC) samples and 67.14% for cross validation (CV) and prediction, respectively. In general, it can be concluded that HSI technology combined with chemometrics has the potential to differentiate and classify meat samples according to their textural characteristics.