Person:
Echeverz SarasĂșa, Maite

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Echeverz SarasĂșa

First Name

Maite

person.page.departamento

Ciencias de la Salud

person.page.instituteName

ORCID

0000-0002-4153-4549

person.page.upna

810062

Name

Search Results

Now showing 1 - 10 of 12
  • PublicationOpen Access
    Insights into c-di-GMP signaling and the PGA exopolysaccharide biological functions using Salmonella as a model organism
    (2017) Echeverz SarasĂșa, Maite; Lasa Uzcudun, ĂĂ±igo; Solano Goñi, Cristina; ProducciĂłn Agraria; Nekazaritza Ekoizpena
    Salmonella es un patĂłgeno alimentario de gran relevancia clĂ­nica capaz de adherirse a superficies y formar comunidades bacterianas embebidas en una matriz que ellas mismas producen denominadas biofilms. Esta matriz confiere a las bacterias protecciĂłn frente a agentes externos, aumentando su tolerancia frente a condiciones ambientales adversas, agentes antimicrobianos o el sistema inmune del hospedador. Existe una vĂ­a de señalizaciĂłn, mediada por el dinucleĂłtido cĂ­clico, c-di- GMP, que controla en muchas especies bacterianas la sĂ­ntesis de diversos componentes de la matriz del biofilm, de manera que concentraciones elevadas de este nucleĂłtido activan la producciĂłn de la matriz y por lo tanto del biofilm. La formaciĂłn de biofilms en explotaciones agropecuarias y lugares donde se procesan alimentos es una fuente potencial de contaminaciĂłn y de transmisiĂłn de este patĂłgeno. Diversas medidas de higiene y seguimiento han sido implementadas por las autoridades para el control de esta bacteria; sin embargo alrededor de 93 millones de personas en todo el mundo sufren salmonelosis cada año. Por ello, la bĂșsqueda de medidas alternativas de control, basadas en la vacunaciĂłn animal, asĂ­ como el estudio de los mecanismos de patogenicidad y formaciĂłn de biofilm de Salmonella han sido el objeto de este trabajo.
  • PublicationOpen Access
    Biofilm dispersion and quorum sensing
    (Elsevier, 2014) Solano Goñi, Cristina; Echeverz SarasĂșa, Maite; Lasa Uzcudun, ĂĂ±igo; IdAB. Instituto de AgrobiotecnologĂ­a / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM13329.RI1
    Biofilm development and quorum sensing are closely interconnected processes. Biofilm formation is a cooperative group behaviour that involves bacterial populations living embedded in a self produced extracellular matrix. Quorum sensing (QS) is a cell-cell communication mechanism that synchronizes gene expression in response to population cell density. Intuitively, it would appear that QS might coordinate the switch to a biofilm lifestyle when the population density reaches a threshold level. However, compelling evidence obtained in different bacterial species coincides in that activation of QS occurs in the formed biofilm and activates the maturation and disassembly of the biofilm in a coordinate manner. The aim of this review is to illustrate, using four bacterial pathogens as examples, the emergent concept that QS activates the biofilm dispersion process.
  • PublicationOpen Access
    Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host
    (Public Library of Science, 2017) Echeverz SarasĂșa, Maite; GarcĂ­a MartĂ­nez, Begoña; Sabalza BaztĂĄn, Amaia; Valle Turrillas, Jaione; GabaldĂłn Estevan, Juan Antonio; Solano Goñi, Cristina; Lasa Uzcudun, ĂĂ±igo; IdAB. Instituto de AgrobiotecnologĂ­a / Agrobioteknologiako Institutua
    Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-ÎČ-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host.
  • PublicationOpen Access
    Evaluation of a Salmonella strain lacking the secondary messenger c-di-GMP and RpoS as a live oral vaccine
    (Public Library of Science, 2016) Latasa Osta, Cristina; Echeverz SarasĂșa, Maite; GarcĂ­a Ona, Enrique; Burgui Erice, Saioa; Casares, Noelia; HervĂĄs Stubbs, Sandra; Lasarte, Juan JosĂ©; Lasa Uzcudun, ĂĂ±igo; Solano Goñi, Cristina; GarcĂ­a MartĂ­nez, Begoña; Gil Puig, Carmen; IdAB. Instituto de AgrobiotecnologĂ­a / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM 13329.RI1
    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. Cdi-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-Îł, TNF- α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine
  • PublicationRestricted
    ActivaciĂłn de infecciones virales persistentes en larvas de S. exigua inoculadas con baculovirus
    (2008) Echeverz SarasĂșa, Maite; Muñoz, Delia; Escuela TĂ©cnica Superior de Ingenieros AgrĂłnomos; Nekazaritza Ingeniarien Goi Mailako Eskola Teknikoa
  • PublicationOpen Access
    Functional analysis of intergenic regulatory regions of genes encoding surface adhesins in Staphylococcus aureus isolates from periprosthetic joint infections
    (Elsevier, 2022) Morales Laverde, Liliana Andrea; Trobos, Margarita; Echeverz SarasĂșa, Maite; Solano Goñi, Cristina; Lasa Uzcudun, ĂĂ±igo; Ciencias de la Salud; Osasun Zientziak
    Staphylococcus aureus is a leading cause of prosthetic joint infections (PJI). Surface adhesins play an important role in the primary attachment to plasma proteins that coat the surface of prosthetic devices after implantation. Previous efforts to identify a genetic component of the bacterium that confers an enhanced capacity to cause PJI have focused on gene content, kmers, or single-nucleotide polymorphisms (SNPs) in coding sequences. Here, using a collection of S. aureus strains isolated from PJI and wounds, we investigated whether genetic variations in the regulatory region of genes encoding surface adhesins lead to differences in their expression levels and modulate the capacity of S. aureus to colonize implanted prosthetic devices. The data revealed that S. aureus isolates from the same clonal complex (CC) contain a specific pattern of SNPs in the regulatory region of genes encoding surface adhesins. As a consequence, each clonal lineage shows a specific profile of surface proteins expression. Co-infection experiments with representative isolates of the most prevalent CCs demonstrated that some lineages have a higher capacity to colonize implanted catheters in a murine infection model, which correlated with a greater ability to form a biofilm on coated surfaces with plasma proteins. Together, results indicate that differences in the expression level of surface adhesins may modulate the propensity of S. aureus strains to cause PJI. Given the high conservation of surface proteins among staphylococci, our work lays the framework for investigating how diversification at intergenic regulatory regions affects the capacity of S. aureus to colonize the surface of medical implants.
  • PublicationOpen Access
    Salmonella biofilm development depends on the phosphorylation status of RcsB
    (American Society for Microbiology, 2012) Latasa Osta, Cristina; GarcĂ­a MartĂ­nez, Begoña; Echeverz SarasĂșa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Campoy SĂĄnchez, Susana; GarcĂ­a del Portillo, Francisco; Solano Goñi, Cristina; Lasa Uzcudun, ĂĂ±igo; IdAB. Instituto de AgrobiotecnologĂ­a / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: IIM13329.RI1
    The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium.
  • PublicationOpen Access
    A DIVA vaccine strain lacking RpoS and the secondary messenger c-di-GMP for protection against salmonellosis in pigs
    (BioMed Central, 2020) Gil Puig, Carmen; Latasa Osta, Cristina; GarcĂ­a Ona, Enrique; LĂĄzaro, Isidro; Labairu, Javier; Echeverz SarasĂșa, Maite; Burgui Erice, Saioa; GarcĂ­a MartĂ­nez, Begoña; Lasa Uzcudun, ĂĂ±igo; Solano Goñi, Cristina; Ciencias de la Salud; Osasun Zientziak; Universidad PĂșblica de Navarra / Nafarroako Unibertsitate Publikoa; Gobierno de Navarra / Nafarroako Gobernua, IIM 13329.RI1
    Salmonellosis is the second most common food-borne zoonosis in the European Union, with pigs being a major reservoir of this pathogen. Salmonella control in pig production requires multiple measures amongst which vaccination may be used to reduce subclinical carriage and shedding of prevalent serovars, such as Salmonella enterica serovar Typhimurium. Live attenuated vaccine strains offer advantages in terms of enhancing cell mediated immunity and allowing inoculation by the oral route. However, main failures of these vaccines are the limited cross-protection achieved against heterologous serovars and interference with serological monitoring for infection. We have recently shown that an attenuated S. Enteritidis strain (ΔXIII) is protective against S. Typhimurium in a murine infection model. ΔXIII strain harbours 13 chromosomal deletions that make it unable to produce the sigma factor RpoS and synthesize cyclic-di-GMP (c-di-GMP). In this study, our objectives were to test the protective effects of ΔXIII strain in swine and to investigate if the use of ΔXIII permits the discrimination of vaccinated from infected pigs. Results show that oral vaccination of pre-weaned piglets with ΔXIII cross-protected against a challenge with S. Typhimurium by reducing faecal shedding and ileocaecal lymph nodes colonization, both at the time of weaning and slaughter. Vaccinated pigs showed neither faecal shedding nor tissue persistence of the vaccine strain at weaning, ensuring the absence of ΔXIII strain by the time of slaughter. Moreover, lack of the SEN4316 protein in ΔXIII strain allowed the development of a serological test that enabled the differentiation of infected from vaccinated animals (DIVA).
  • PublicationOpen Access
    Coordinated cyclic-di-GMP repression of salmonella motility through YcgR and cellulose
    (American Society for Microbiology, 2013) Zorraquino Salvo, Violeta; GarcĂ­a MartĂ­nez, Begoña; Latasa Osta, Cristina; Echeverz SarasĂșa, Maite; Toledo Arana, Alejandro; Valle Turrillas, Jaione; Lasa Uzcudun, ĂĂ±igo; Solano Goñi, Cristina; IdAB. Instituto de AgrobiotecnologĂ­a / Agrobioteknologiako Institutua; Gobierno de Navarra / Nafarroako Gobernua: 1312/2010
    Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.
  • PublicationOpen Access
    Evaluation of the use of sonication combined with enzymatic treatment for biofilm removal in the microbiological diagnosis of prosthetic joint infection
    (American Society for Microbiology, 2024) HenrĂ­quez, LucĂ­a; MartĂ­n Contero, MarĂ­a Del Carmen; Echeverz SarasĂșa, Maite; Lasa Uzcudun, ĂĂ±igo; Ezpeleta Baquedano, MarĂ­a Carmen; Portillo, Eugenia; Ciencias de la Salud; Osasun Zientziak; Gobierno de Navarra / Nafarroako Gobernua
    Sonicating explanted prosthetic implants to physically remove biofilms is a recognized method for improving the microbiological diagnosis of prosthetic joint infection (PJI); however, chemical and enzymatic treatments have been investigated as alternative biofilm removal methods. We compared the biofilm dislodging efficacy of sonication followed by the addition of enzyme cocktails with different activity spectra in the diagnosis of PJI with that of the sonication of fluid cultures alone. Consecutive patients who underwent prosthesis explantation due to infection at our institution were prospectively enrolled for 1 year. The diagnostic procedure included the collection of five intraoperative tissue cultures, sonication of the removed devices, and conventional culture of the sonication fluid. The resulting sonication fluid was also treated with an enzyme cocktail consisting of homemade dispersin B (0.04 ¿g/mL) and proteinase K (Sigma; 100 ¿g/mL) for 45 minutes at 37°C. The resulting sonication (S) and sonication with subsequent enzymatic treatment (SE) fluids were plated for aerobic and anaerobic culture broth for 7 days (aerobic) or 14 days (anaerobic). Identification was performed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (Bruker). We included 107 patients from whom a prosthetic implant had been removed, among which PJI was diagnosed in 36 (34%). The sensitivity of S alone was significantly greater than that of SE alone (82% vs 71%; P < 0.05). Four patients with PJI were positive after sonication alone but negative after sonication plus enzymatic treatment. The four microorganisms missed after the addition of the enzyme cocktail were Staphylococcus aureus, two coagulase-negative Staphylococci, and Cutibacterium acnes. In conclusion, sonication alone was more sensitive than sonication followed by enzymatic treatment. The combination of these two methods had no synergistic effect; in contrast, the results suggest that the combination of both dislodgment methods affects the viability of gram-positive microorganisms.