Person: Rodrigues Pinto, Ana Margarida
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Rodrigues Pinto
First Name
Ana Margarida
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.upna
9847
Name
8 results
Search Results
Now showing 1 - 8 of 8
Publication Open Access Multiwavelength Raman fiber lasers using Hi-Bi photonic crystal fiber loop mirrors combined with random cavities(IEEE / OSA, 2011) Rodrigues Pinto, Ana Margarida; Frazão, Orlando; Santos, José Luís; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaDifferent multiwavelength Raman fiber lasers based on a hybrid cavity set-up are proposed. The lasing schemes are based in highly birefringent photonic crystal fiber loop mirrors combined with random cavities. The Hi-Bi PCF loop mirrors are characterized by an interferometric output; whereas the random mirrors are created by cooperative Rayleigh scattering due to Raman gain. This configuration allows suppression of Rayleigh associated noise growth, while taking advantage of it as an active part of the laser cavity, enhancing the achievable gain. The proposed fiber lasers present stable operation at room temperature although different output maxima and shapes depending on the fiber loop mirror/random mirror combination.Publication Open Access Micro-displacement sensor based on a hollow-core photonic crystal fiber(MDPI, 2012) Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Baptista, José Manuel; Santos, José Luís; Frazão, Orlando; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA sensing head based on a hollow-core photonic crystal fiber for in-reflection measurement of micro-displacements is presented. The sensing structure takes advantage of the multimodal behavior of a short segment of hollow-core photonic crystal fiber in-reflection, being spliced to a single mode fiber at its other end. A modal interferometer is obtained when the sensing head is close to a mirror, through which displacement is measured.Publication Open Access All-fiber lasers through photonic crystal fibers(Science Wise Publishing & De Gruyter, 2013) Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA review on all-fiber lasers based on photonic crystal fibers is presented. Photonic crystal fibers present improved features beyond what conventional optical fibers can offer. Due to their geometric versatility, photonic crystal fibers can present special properties and abilities which can lead to enhanced lasing structures. A brief description of photonic crystal fibers and fiber laser’s properties is presented. All-fiber laser structures developed using photonic crystal fibers are described and divided in two groups, depending on the cavity topology: ring cavity fiber lasers and linear cavity fiber lasers. All-fiber lasers applications in the photonic crystal fiber related sensing field are described.Publication Open Access ECOAL project: delivering solutions for integrated monitoring of coal-related fires supported on optical fiber sensing technology(MDPI, 2017) Ribeiro, Joana; Viveiros, Duarte; Ferreira, João; López Gil, Alexia; Domínguez López, Alejandro; Martins, Hugo F.; Pérez Herrera, Rosa Ana; López Aldaba, Aitor; Duarte, Lia; Rodrigues Pinto, Ana Margarida; Martín López, Sonia; Baierl, Hardy; Jamier, Raphael; Rougier, Sébastien; Auguste, Jean-Louis; Teodoro, Ana Cláudia; Gonçalves, José Alberto; Esteban, Óscar; Santos, José Luís; Roy, Philippe; López-Amo Sáinz, Manuel; González Herráez, Miguel; Baptista, José Manuel; Flores, Deolinda; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaThe combustion of coal wastes resulting from mining is of particular environmental concern, and the importance of proper management involving real-time assessment of their status and identification of probable evolution scenarios is recognized. Continuous monitoring of the combustion temperature and emission levels of certain gases allows for the possibility of planning corrective actions to minimize their negative impact on the surroundings. Optical fiber technology is well suited to this purpose and here we describe the main attributes and results obtained from a fiber optic sensing system projected to gather data on distributed temperature and gas emissions in these harsh environments.Publication Open Access An in-reflection strain sensing head based on a Hi-Bi photonic crystal fiber(MDPI, 2013) Rota Rodrigo, Sergio; Rodrigues Pinto, Ana Margarida; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA photonic crystal fiber-based sensing head is proposed for strain measurements. The sensor comprises a Hi-Bi PCF sensing head to measure interferometric signals in-reflection. An experimental background study of the sensing head is conducted through an optical backscatter reflectometer confirming the theoretical predictions, also included. A cost effective setup is proposed where a laser is used as illumination source, which allows accurate high precision strain measurements. Thus, a sensitivity of ~7.96 dB/me was achieved in a linear region of 1,200 μe.Publication Open Access Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser(Optical Society of America, 2011) Rodrigues Pinto, Ana Margarida; Bravo Acha, Mikel; Fernández Vallejo, Montserrat; López-Amo Sáinz, Manuel; Kobelke, J.; Schuster, K.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaIn the present work, a multiwavelength fiber laser based in the combination of a double-random mirror and a suspended-core Sagnac interferometer is presented. The double-random mirror acts by itself as a random laser, presenting a 30dB SNR, as result of multiple Rayleigh scattering events produced in the dispersion compensating fibers by the Raman amplification. The suspended-core fiber Sagnac interferometer provides the multi peak channeled spectrum, which can be tuned by changing the length of the fiber. The result of this combination is a stable multiwavelength peak laser with a minimum of ~25dB SNR, which is highly sensitive to polarization induced variations.Publication Open Access Experimental and numerical characterization of a hybrid Fabry-Perot cavity for temperature sensing(MDPI, 2015) López Aldaba, Aitor; Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Frazão, Orlando; Santos, José Luís; Baptista, José Manuel; Baierl, Hardy; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaA hybrid Fabry-Pérot cavity sensing head based on a four-bridge microstructured fiber is characterized for temperature sensing. The characterization of this cavity is performed numerically and experimentally in the L-band. The sensing head output signal presents a linear variation with temperature changes, showing a sensitivity of 12.5 pm/°C. Moreover, this Fabry-Pérot cavity exhibits good sensitivity to polarization changes and high stability over time.Publication Open Access Photonic crystal fibers for sensing applications(Hindawi Publishing Corporation, 2012) Rodrigues Pinto, Ana Margarida; López-Amo Sáinz, Manuel; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaPhotonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential forsensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.