Ascorbe Muruzabal, Joaquín
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ascorbe Muruzabal
First Name
Joaquín
person.page.departamento
Ingeniería Eléctrica y Electrónica
person.page.instituteName
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
13 results
Search Results
Now showing 1 - 10 of 13
Publication Open Access Optical sensors based on lossy-mode resonances(Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISCPublication Open Access Recent developments in fiber optics humidity sensors(MDPI, 2017) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA wide range of applications such as health, human comfort, agriculture, food processing and storage, and electronic manufacturing, among others, require fast and accurate measurement of humidity. Sensors based on optical fibers present several advantages over electronic sensors and great research efforts have been made in recent years in this field. The present paper reports the current trends of optical fiber humidity sensors. The evolution of optical structures developed towards humidity sensing, as well as the novel materials used for this purpose, will be analyzed. Well-known optical structures, such as long-period fiber gratings or fiber Bragg gratings, are still being studied towards an enhancement of their sensitivity. Sensors based on lossy mode resonances constitute a platform that combines high sensitivity with low complexity, both in terms of their fabrication process and the equipment required. Novel structures, such as resonators, are being studied in order to improve the resolution of humidity sensors. Moreover, recent research on polymer optical fibers suggests that the sensitivity of this kind of sensor has not yet reached its limit. Therefore, there is still room for improvement in terms of sensitivity and resolution.Publication Open Access Humidity sensor based on Bragg gratings developed on the end facet of an optical fiber by sputtering of one single material(MDPI, 2017) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.Publication Open Access Optical fiber vacuum sensor based on modal interferometer and PDMS coating(IEEE, 2019) Ascorbe Muruzabal, Joaquín; Fuentes Lorenzo, Omar; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónThis work studies the behavior of polydimethylsiloxane (PDMS) as a transducer for optical vacuum pressure measurements. The optical structure chosen for this device is a modal interferometer achieved by splicing a coreless multimode optical fiber between two single mode fibers. Then, an etching process is applied to the obtained device, in order to decrease the diameter of the fiber and increase the sensitivity. Finally, the fiber is coated by dip-coating with a layer of PDMS, which changes its volume with pressure changes. The device has been studied in the 1x10(-3) mbar to 10 mbar range with a wavelength shift of 4 nm. A maximum sensitivity of 35 nm/mbar was obtained. The simple fabrication process, which can be applied to more sensitive structures, suggest that PDMS can be a good choice for the development of optical fiber vacuum sensors.Publication Open Access Optical fiber vacuum sensor based on etched SMS structure and PDMS coating(IEEE, 2020) Ascorbe Muruzabal, Joaquín; Fuentes Lorenzo, Omar; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Corres Sanz, Jesús María; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this work, an optical fiber vacuum sensor based on a single-mode multimode single-mode (SMS) structure coated with polydimethylsiloxane (PDMS) is studied. The SMS structure generates an interferometric pattern based on multimode interference. The structure is dip-coated with a layer of PDMS, whose optical properties change when it is subjected to varying vacuum pressure. Different strategies are applied in an attempt to improve the final performance of the sensor, such as decreasing the diameter of the fiber and modifying the properties of the coating by modifying the proportion of solvent. Decreasing the diameter of the optical fiber and using toluene as a solvent are both proved to be successful strategies for increasing the sensitivity of the sensor. The devices are studied in the 1×10-3–10 mbar range with a maximum wavelength shift of 12 nm, leading to a maximum sensitivity of 35 nm/mbar. The simplicity of the fabrication process, which can be applied to more sensitive structures, suggests that PDMS may be a good choice for the development of optical fiber vacuum sensors.Publication Open Access Dual-cavity fiber fabry-perot interferometer coated with SnO2for relative humidity and temperature sensing(IEEE, 2020) Domínguez Flores, Carmen E.; Rodríguez-Quiroz, Osvaldo; Monzón-Hernández, David; Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónAn optical fiber tip interferometer for the measurement of relative humidity (RH) and temperature is proposed. The optical fiber structure used, a dual-cavity optical fiber Fabry-Perot interferometer (DFFPI), is simply-to-fabricate, compact, and robust. The reflectance (RDFFPI) of the interferometer is sensitive to the refractive index (RI) and temperature of the external medium. Consequently, when the cross-section of the fiber tip was coated with a SnO 2 thin film, whose RI changes according to the humidity of the surrounding ambient, the measurement of the RH was possible. An increment of the RH produced a decrement of RI of the SnO 2 thin film, then the reflectance of the fiber tip end-face diminished, and this produced a decrement of the visibility of the interference fringes. The analysis of the RDFFPI was carried out in the Fourier domain, using a novel processing method it was possible to establish that the amplitude of two peaks of Fourier spectrum changed at a ratio of 39.49 × 10 -3 %RH -1 in the range of 40 to 90 RH%. On the other hand, the temperature of the humidity chamber was monitored, from 25 to 60 °C at a fixed RH%, by analyzing the phase shift of the interference pattern produced by the changes in the optical path length of the cavities. The good sensitivity, stability, reproducibility, and compactness of the fiber tip RH sensor make this proposal very appealing in a wide range of applications.Publication Open Access Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters(IEEE, 2015) Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Bariáin Aisa, Cándido; Goicoechea Fernández, Javier; Ruiz Zamarreño, Carlos; Elosúa Aguado, César; Hernáez Sáenz de Zaitigui, Miguel; Rivero Fuente, Pedro J.; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; Sánchez Zábal, Pedro; Zubiate Orzanco, Pablo; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Matías Maestro, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaNanometer scale coatings with a complex refractive index deposited on optical fibre permit to obtain attenuation bands in the transmission spectrum, whose central wavelength coincides with the moment when a mode guided in the optical fibre cladding starts to be guided in the coating. Due to the complex refractive index of the coating, the guided mode is a lossy mode. Consequently, these attenuation bands receive the name of lossy mode resonances. This phenomenon can be used for development of ultra-high sensitivity photonic devices (for detection, among others, of volatile organic compounds, pH and refractive index) or for optical filtering. In this work, rules for adequate design are indicated based on numerical results obtained with FIMMWAVE and on experimental results that corroborate the theoretical predictions.Publication Open Access Route towards a label-free optical waveguide sensing platform based on lossy mode resonances(IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.Publication Open Access Fabrication of Bragg gratings on the end facet of standard optical fibers by sputtering the same material(IEEE, 2016) Ascorbe Muruzabal, Joaquín; Corres Sanz, Jesús María; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA sputtering process has been applied to deposit quarter-wavelength stacks on the end facet of cleaved optical fibers by using only one sputtering target. Standard multimode optical fibers were used as substrates to fabricate broadband filters, and the experimentally measured spectral responses of these devices are shown. Periodical changes in the refractive index of the coating have been achieved by changing the vacuum chamber pressure. A reflected peak with a full-width at half-maximum of 20 nm centered at 440 nm has been obtained, which provides a good structure for the development of optical fiber sensors working with the wavelength detection technique. This optical structure can be used for several purposes: as tunable wavelength filters or optical fiber sensors or to improve the performance of fluorescence sensors. A theoretical analysis of these structures corroborates the experimental results and allows some rules to be obtained.Publication Open Access SnO2-MOF-Fabry-Pérot humidity optical sensor system based on Fast Fourier transform technique(SPIE, 2016) López Aldaba, Aitor; López Torres, Diego; Ascorbe Muruzabal, Joaquín; Rota Rodrigo, Sergio; Elosúa Aguado, César; López-Amo Sáinz, Manuel; Arregui San Martín, Francisco Javier; Corres Sanz, Jesús María; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaIn this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Pérot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.