Person:
Berrueta Irigoyen, Alberto

Loading...
Profile Picture

Email Address

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Berrueta Irigoyen

First Name

Alberto

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

ORCID

0000-0001-6400-7293

person.page.upna

810802

Name

Search Results

Now showing 1 - 10 of 44
  • PublicationOpen Access
    Influence of renewable power fluctuations on the lifetime prediction of lithium-ion batteries in a microgrid environment
    (IEEE, 2019) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua
    This contribution analyses lifetime estimation errors due to the effect of power fluctuations in lithium-ion batteries connected to microgrids when different time steps are used for the calculations. Usually, not every second data are available or the computational cost is excessively high. Those facts result in the use of larger time steps. However, the increase of the time steps may turn out in too optimistic predictions. Data from a real microgrid make it possible to optimize calculation times while keeping low errors. The results show that when 1 minute time step is set, the computation time is reduced by 14.4 times while the lifetime overstatement is only 3.5-5.2% higher, depending on the aging model.
  • PublicationOpen Access
    Electro-thermal modelling of a supercapacitor and experimental validation
    (Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    This paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.
  • PublicationOpen Access
    Identification of critical parameters for the design of energy management algorithms for Li-ion batteries operating in PV power plants
    (IEEE, 2020) Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; Marcos Álvarez, Javier; Parra Laita, Íñigo de la; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904; Gobierno de Navarra / Nafarroako Gobernua, 0011-1411-2018-000029 GERA
    Lithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. For a proper use of such storage systems, an energy management algorithm (EMA) is required. A number of EMAs, with various characteristics, have been published recently, given the diverse nature of battery problems. The EMA of deterministic battery problems is usually based on an optimization algorithm. The selection of such an algorithm depends on a few problem characteristics, which need to be identified and closely analyzed. The aim of this article is to identify the critical optimization problem parameters that determine the most suitable EMA for a Li-ion battery. With this purpose, the starting point is a detailed model of a Li-ion battery. Three EMAs based on the algorithms used to face deterministic problems, namely dynamic, linear, and quadratic programming, are designed to optimize the energy dispatch of such a battery. Using real irradiation and power price data, the results of these EMAs are compared for various case studies. Given that none of the EMAs achieves the best results for all analyzed cases, the problem parameters that determine the most suitable algorithm are identified to be four, i.e., desired computation intensity, characteristics of the battery aging model, battery energy and power capabilities, and the number of optimization variables, which are determined by the number of energy storage systems, the length of the optimization problem, and the desired time step.
  • PublicationOpen Access
    Applied method to model the thermal runaway of lithium-ion batteries
    (IEEE, 2021) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The thermal runaway (TR) is one of the most dangerous phenomena related to lithium-ion batteries. For this reason, there are different proposals in the literature for its modelling. Most of these proposed models take into account the decomposition reactions between the internal components of the cell, and base the adjustment of the parameters on numerous abuse tests that lead to the appearance of TR. However, these tests are destructive, require specific equipment, present a high economic cost and are very time consuming. This paper proposes a modelling method which enables the development of TR models with the use of fewer resources. This method is based on chemical kinetics, which allow a simplification of the general modelling process published in the literature. At the same time it maintains good accuracy and makes it possible to define the TR behavior of any type of cell, regardless of its chemistry, shape or size. Furthermore, the proposed method allows the use of the experimental results most commonly presented in the specialized literature, which significantly reduces the need for destructive testing. The presented modelling method achieves a good compromise between accuracy and applicability in the validations shown in the paper.
  • PublicationOpen Access
    New design alternatives for a hybrid photovoltaic and doubly-fed induction wind plant to augment grid penetration of renewable energy
    (IEEE, 2021) Goñi, Naiara; Sacristán Sillero, Javier; Berrueta Irigoyen, Alberto; Rodríguez Rabadan, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Reducing carbon emissions is essential to stop climate change. The grid-share of renewable generation plants is increasing, being wind and photovoltaic plants the most common ones, whereas conventional plants are the only ones that provide the necessary services to maintain the grid stability and keep the generation-demand balance. However, with the aim of achieving carbon-neutral generation, conventional plants are being dismantled. This leads to the imminent need of providing these services with renewable plants. Due to this challenge, this proposal analyses a hybrid plant composed by wind and photovoltaic generation with two types of storage, lithium-ion batteries and a thermal storage system based on volcanic stones. In order to compare both strategies, a technoeconomic methodology is explained that allows to optimally size the plant, using the current prices of each technology. The most cost-competitive proposal turns to be the hybrid plant with thermal storage, composed by 623.9 MW installed power and 21.9 GWh of storage, which could replace a 100 MW, 24/7 conventional power plant, with an LCOHS (levelized cost of hybrid system) of 118.38 €/MWh, providing identical grid services and an equivalent inertia in a way committed with the environment. This is in turn a zero-carbon emissions solution perfectly matched to a second life plan for a conventional power plant.
  • PublicationOpen Access
    Impact of micro-cycles on the lifetime of lithium-ion batteries: an experimental study
    (Elsevier, 2022) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Mateos Inza, Miren; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa Gobierno de Navarra / Nafarroako Gobernua
    Experimental aging studies are commonly conducted on lithium-ion batteries by full charge and discharge cycles. However, such profiles may differ from the actual operation of batteries in electric vehicles and stationary applications, where they are subjected to different partial charges and discharges. These partial cycles, which take place during a main charge or discharge process, are called micro-cycles if their depth of discharge is <2 %. A number of authors have pointed out the relevance of the time resolution to estimate the energy throughput of a battery due to these micro-cycles in applications such as renewable microgrids. However, to the best of our knowledge, there are no experimental studies in the literature that assess the impact of these micro-cycles on battery degradation. In this article, the impact of micro-cycles on the loss of performance of a lithium-ion battery is experimentally studied. The results show that micro-cycles have a negligible, or even positive effect on the aging of lithium-ion cells compared to the aging caused by full cycles. In fact, if charge throughput or equivalent full cycles are used to measure the use of a battery, then cells subjected to micro-cycles exhibit a 50 % extended lifetime compared to cells only subjected to full cycles. More precisely, cells including micro-cycles with depth of discharge of 0.5 % lasted for nearly 3000 equivalent full cycles, whereas cells aged under standard deep cycles lasted for no >1500. Nevertheless, if the number of deep cycles, disregarding micro-cycles, is the unit to measure battery use, then the degradation of cells with and without micro-cycles is similar. Based on this result, the number of cycles can be identified as a more accurate variable to measure the use of a cell, in comparison to charge throughput.
  • PublicationOpen Access
    Energy storage systems based on lithium-ion batteries and supercapacitors: characterization, modelling and integration with renewable energies
    (2017) Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako Gobernua
    Los inconvenientes medioambientales, sociales y económicos que presentan los combustibles fósiles y nucleares están propiciando un uso cada vez mayor de fuentes de energía renovables. El fuerte desarrollo tecnológico de los sistemas de generación basados en estas fuentes de energía, especialmente de los sistemas eólicos y fotovoltaicos, ha abaratado enormemente sus costes de producción, resultando ya tecnologías competitivas en relación con las plantas convencionales. Actualmente, el principal obstáculo que limita su integración masiva en la red eléctrica es su gestionabilidad, dada la naturaleza intermitente del recurso renovable. Los sistemas de almacenamiento energético distribuidos, y en particular las baterías de litio y los supercondensadores, surgen como una de las mejores alternativas para mejorar la gestión de esta energía y facilitar la operación de una red el ectrica cada vez más basada en sistemas renovables. Esta tesis analiza en profundidad ambas tecnologías de almacenamiento, especialmente cuando funcionan en entornos de generación renovable. Las principales líneas de trabajo de la tesis son: Análisis del estado actual de las tecnologías; Estudio de la influencia de los fenómenos termodinámicos, electroquímicos y térmicos en el funcionamiento de estos sistemas de almacenamiento; Modelado electroquímico y térmico de ambas tecnologías de almacenamiento; Estimación del estado de carga y del envejecimiento en baterías de litio; Validación experimental de los modelos propuestos ante diferentes condiciones de funcionamiento; Desarrollo de metodologías para el diseño y funcionamiento óptimo de sistemas de almacenamiento basados en baterías de litio en entornos renovables y particularización para centrales fotovoltaicas.
  • PublicationOpen Access
    Onset of irreversible reactions in overcharging lithium-ion cells: an experimental and modeling approach
    (IEEE, 2023) Irujo Izcue, Elisa; Berrueta Irigoyen, Alberto; Lalinde Sainz, Iñaki; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Lithium-ion batteries are energy storage systems used in an increasing number of applications. Due to their flammable materials, their use entails risks of fire and explosion. The study of the abuse operation of these batteries before reaching the thermal runaway is a relevant research topic to prevent safety issues. There are various studies in the bibliography providing exhaustive thermal studies of the safe operating area, as well as concerning the thermal runaway. However, the onset irreversible reactions, that take place at a SOC around 110%, have not been properly analyzed. We present in this contribution an experimental study of this onset reaction measured in pouch Li-ion cells under various conditions of charge current and temperature. We also propose a lumped-parameter thermal model for the cell, which allows a detailed characterization of this exothermic reaction. The results achieved in this contributions can be a key tool to prevent overcharge accidents that may arise due to malfunctioning of the battery charger or battery management system.
  • PublicationOpen Access
    Extensive analysis of photovoltaic battery self-consumption: evaluation through an innovative district case-study
    (AIP Publishing, 2019) Millet, Lluís; Berrueta Irigoyen, Alberto; Bruch, Maximilian; Reiners, N.; Vetter, M.; Institute of Smart Cities - ISC
    Energy storage is one of the key elements within the actual stage of the energy transition, as it is probably one of the most important factors to allow high penetration of fluctuating renewable energies, such as wind or solar, in the existing power systems. Intensive research is being conducted to assess the economic aspects and technical performance of renewable energy-based systems supported by batteries by evaluating different services that batteries can provide to the electric grid or to the end-consumers. In Germany, where the majority of the currently installed 43 GW of PV capacity corresponds to small residential, commercial, or industrial facilities, an interesting market for batteries to enhance local self-consumption and autarky is already booming, with more than 80 000 storage system installations in 2017. In this context, this study presents a comprehensive analysis of the photovoltaic battery model by analyzing the technical and economic consequences that variations on the most relevant system parameters induce. The presented results are based on high resolution data obtained from a representative residential district with an autarky of above 95%. The employed battery model is based on the results obtained through an extensive test campaign and includes electrical and thermal sub-models. The analysis predicts that grid parity of residential PV battery systems can be reached in the upcoming years, with especially great potential of the retrofitting market for those PV installations which run out of the feed-in tariff policy.
  • PublicationOpen Access
    Role of student associations in the acquisition of competences in university engineering programs
    (IEEE, 2023) Samanes Pascual, Javier; Parra Laita, Íñigo de la; Berrueta Irigoyen, Alberto; Rosado Galparsoro, Leyre; Soto Cabria, Adrián; Elizondo Martínez, David; Catalán Ros, Leyre; Sanchis Gúrpide, Pablo; Institute of Smart Cities - ISC
    Students in the STEM field (Science, Technology, Engineering and Mathematics), do not only require deep technical knowledge, but a complete set of global skills related to management, teamwork, lifelong learning, personal development, communications skills or proactiveness, abilities often referred as soft-skills. Student-led organizations, and specifically, university student associations, are one of the best alternatives to promote the acquisition of soft-skills in STEM high education fields. These skills are competences already included in official university programs that can hardly be addressed or acquired from traditional university education. This article studies how student enrollment in student led organizations (SLOs), with an active participation on their organization and activities, allows engineering students to achieve a better development of these soft skills. As case study, a medium size university, with 9000-students and eleven SLOs, six of them focused on STEM related fields, is used in this paper. A survey is conducted among the university community to identify their degree of participation in SLOs, and to test whether participation in these initiatives increases students' self-perception of their soft skill acquisition during their university studies. This survey shows how students of engineering programs, with a high degree of involvement in SLOs, demonstrated greater confidence in their soft skills at the end of their university years.