Berrueta Irigoyen, Alberto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Berrueta Irigoyen
First Name
Alberto
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
41 results
Search Results
Now showing 1 - 10 of 41
Publication Open Access On the technical reliability of lithium-ion batteries in a zero emission polar expedition(IEEE, 2020) Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Oficialdegui, Ignacio; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1904This contribution presents a technical analysis of the Lithium-ion batteries (LIBs) used in the WindSled project. In this project, an expedition has been carried out by means of a 0-emission vehicle that have covered more than 2500 kilometers in Antarctica Eastern Plateau pulled by kites. This adventure allowed the performance of 10 scientific experiments with a minimal disturbance of the polar environment. The required electricity for the survival and the scientific experimentation was delivered by flexible PV panels installed on the sled and commercial LIBs. The study performed in this contribution aims at the quantification of the LIBs degradation after the expedition. The results show a capacity fade of 5 % and an internal resistance increase of 30 %. Based on these results, it can be claimed that the LIBs used in the WindSled Project can successfully operate under -40°C. Moreover, these batteries can be used in upcoming expeditions, entailing an improvement from an economical and environmental point of view compared to primary batteries.Publication Open Access Experimental assessment of cycling ageing of lithium-ion second-life batteries from electric vehicles(Elsevier, 2020) Braco Sola, Elisa; San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua, 0011–1411–2018–000029 GERA; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, ReBMS PJUPNA1904The reutilization of batteries from electric vehicles allows to benefit from their remaining energy capacity and to increase their lifespan. The applications considered for the second life of these batteries are less demanding than electric vehicles regarding power and energy density. However, there is still some uncertainty regarding the technical and economic viability of these systems. In this context, the study of the ageing and lifetime of reused batteries is key to contribute to their development. This paper assesses the experimental cycle ageing of lithium-ion modules from different Nissan Leaf through accelerated cycling tests on their second life. The evolution of the internal parameters during ageing and the correlation between them are shown, including the analysis of best fitting curves. In addition, a second-life end-of-life criterion is proposed, based on capacity and internal resistance measurements during cells ageing, which can be applied to real application in order to prevent safety issues. By estimating future values from degradation trends and checking latter measurements, the ageing knee is identified. Results show that the modules operate for at least 2033 equivalent full cycles before reaching their ageing knee. This would mean more than 5 years of operation in a real second-life application, such as a photovoltaic self-consumption installation with daily cycling. Moreover, it is shown that a traditional cell characterisation based on capacity and internal resistance measurements is not enough to predict the durability of a cell during its second life.Publication Open Access Hydrogen-lithium energy storage for a stand-alone microgrid(2016) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y ElectrónicaSizing of the storage system for a stand-alone application: Satisfaction of technical requirements; Based on real data from an experimental microgrid; Long lifetime; Lowest pricePublication Open Access Temperature indicators and overtemperature detection in lithium-ion batteries based on electrochemical impedance spectroscopy(IEEE, 2023) Lalinde Sainz, Iñaki; Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenLithium-ion batteries are the leading technology for energy storage systems due to their attractive advantages. However, the safety of lithium-ion batteries is a major concern, as their operating conditions are limited in terms of temperature, voltage and state of charge. Therefore, it is important to monitor the conditions of lithium-ion batteries to guarantee safe operation. To this end, in the present work, we analyze electrochemical impedance spectroscopy (EIS) as a tool to estimate the temperature of batteries. Overtemperature abuse tests from 25 °C to 140 °C are performed at various states of charge, and EIS measurements are obtained during the tests. The influence of temperature on cell impedance at different frequencies is analyzed and new findings are revealed. The real part of the impedance is identified to be the best indicator for cell temperature estimation by EIS. In addition, the best frequency to achieve accurate temperature monitoring, avoiding disturbances produced by state of charge variations, is proposed based on experimental results. Finally, EIS is proven to be a reliable technique for overtemperature and thermal runaway detection.Publication Open Access Design and on-field validation of an embedded system for monitoring second-life electric vehicle lithium-ion batteries(MDPI, 2022) Castillo Martínez, Diego Hilario; Rodríguez Rodríguez, Adolfo Josué; Soto Cabria, Adrián; Berrueta Irigoyen, Alberto; Vargas Requena, Dávid Tomás; Matías Maestro, Ignacio; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Rodríguez Rodríguez, Wenceslao Eduardo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako GobernuaIn the last few years, the growing demand for electric vehicles (EVs) in the transportation sector has contributed to the increased use of electric rechargeable batteries. At present, lithium-ion (Li-ion) batteries are the most commonly used in electric vehicles. Although once their storage capacity has dropped to below 80¿70% it is no longer possible to use these batteries in EVs, it is feasible to use them in second-life applications as stationary energy storage systems. The purpose of this study is to present an embedded system that allows a Nissan® LEAF Li-ion battery to communicate with an Ingecon® Sun Storage 1Play inverter, for control and monitoring purposes. The prototype was developed using an Arduino® microcontroller and a graphical user interface (GUI) on LabVIEW®. The experimental tests have allowed us to determine the feasibility of using Li-ion battery packs (BPs) coming from the automotive sector with an inverter with no need for a prior disassembly and rebuilding process. Furthermore, this research presents a programming and hardware methodology for the development of the embedded systems focused on second-life electric vehicle Li-ion batteries. One second-life battery pack coming from a Nissan® Leaf and aged under real driving conditions was integrated into a residential microgrid serving as an energy storage system (ESS).Publication Open Access Inertial response and inertia emulation in DFIG and PMSG wind turbines: emulating inertia from a supercapacitor-based energy storage system(IEEE, 2021) Sacristán Sillero, Javier; Goñi, Naiara; Berrueta Irigoyen, Alberto; López Taberna, Jesús; Rodríguez Rabadan, José Luis; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe increasing wind power penetration in electrical power systems results in a reduction of operative conventional power plants. These plants include synchronous generators directly connected to the grid. Facing a change in grid frequency, these generators inherently respond by varying their stored kinetic energy and their output power, which contributes to grid stability. Such a response is known as inertial response. Wind turbines (WTs) are mostly based on Doubly-Fed Induction Generator (DFIG) or Permanent Magnet Synchronous Generator (PMSG) machines. Their power electronics interface decouples the electromechanical behaviour of the generator from the power grid, making their inertial response null or insignificant. Therefore, in order not to weaken the frequency response of the power system, WTs must be able to react to frequency variations by changing their output power, i.e., emulating an inertial response. Common techniques for inertia emulation in WTs rely on pitch control and stored kinetic energy variation. This contribution proposes a strategy (applicable for both DFIG and PMSG) which uses the energy stored in a supercapacitor connected to the back-to-back converter DC link to emulate the inertial response. Its performance is compared by simulation with aforementioned common techniques, showing ability to remove certain limitations.Publication Open Access Critical comparison of energy management algorithms for lithium-ion batteries in renewable power plants(IEEE, 2019) Berrueta Irigoyen, Alberto; Soto Cabria, Adrián; García Solano, Miguel; Parra Laita, Íñigo de la; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLithium-ion batteries are gaining importance for a variety of applications due to their price decrease and characteristics improvement. A good energy management strategy is required in order to increase the profitability of an energy system using a Li-ion battery for storage. The vast number of management algorithms that has been proposed to optimize the achieved profit, with diverse computational power requirements and using models with different complexity, raise doubts about the suitability of an algorithm and the required computation power for a particular application. The performance of three energy management algorithms based on linear, quadratic, and dynamic programming are compared in this work. A realistic scenario of a medium-sized PV plant with a constraint of peak shaving is used for this comparison. The results achieved by the three algorithms are compared and the grounds of the differences are analyzed. Among the three compared algorithms, the quadratic one seems to be the most suitable for renewableenergy applications, given the undue simplification of the battery aging required by the linear algorithm and the discretization and computational power required by a dynamic algorithm.Publication Open Access Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants(Elsevier, 2018) Berrueta Irigoyen, Alberto; Heck, Michael; Jantsch, Martin; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute for Advanced Materials and Mathematics - INAMAT2; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua PI038 INTEGRA-RENOVABLESThe unpredictable nature of renewable energies is drawing attention to lithium-ion batteries. In order to make full utilization of these batteries, some research works are focused on the management of existing systems, while others propose sizing techniques based on business models. However, in order to optimise the global system, a comprehensive methodology that considers both battery sizing and management at the same time is needed. This paper proposes a new optimisation algorithm based on a combination of dynamic programming and a region elimination technique that makes it possible to address both problems at the same time. This is of great interest, since the optimal size of the storage system depends on the management strategy and, in turn, the design of this strategy needs to take account of the battery size. The method is applied to a real installation consisting of a 100 kWp rooftop photovoltaic plant and a Li-ion battery system connected to a grid with variable electricity price. Results show that, unlike conventional optimisation methods, the proposed algorithm reaches an optimised energy dispatch plan that leads to a higher net present value. Finally, the tool is used to provide a sensitivity analysis that identifies key informative variables for decision makersPublication Open Access A comprehensive model for lithium-ion batteries: from the physical principles to an electrical model(Elsevier, 2018) Berrueta Irigoyen, Alberto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica; Gobierno de Navarra / Nafarroako Gobernua, PI038 INTEGRA-RENOVABLESThe growing interest in e-mobility and the increasing installation of renewable energy-based systems are leading to rapid improvements in lithium-ion batteries. In this context, battery manufacturers and engineers require advanced models in order to study battery performance accurately. A number of Li-ion battery models are based on the representation of physical phenomena by electrochemical equations. Although providing detailed physics-based information, these models cannot take into account all the phenomena for a whole battery, given the high complexity of the equations. Other models are based on equivalent circuits and are easier to design and use. However, they fail to relate these circuit parameters to physical properties. In order to take the best of both modeling techniques, we propose an equivalent circuit model which keeps a straight correlation between its parameters and the battery electrochemical principles. Consequently, this model has the required simplicity to be used in the simulation of a whole battery, while providing the depth of detail needed to identify physical phenomena. Moreover, due to its high accuracy, it can be used in a wide range of environments, as shown in the experimental validations carried out in the final section of this paper.Publication Open Access Electro-thermal modelling of a supercapacitor and experimental validation(Elsevier, 2014) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Hernández, Andoni; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaThis paper reports on the electro-thermal modelling of a Maxwell supercapacitor (SC), model BMOD0083 with a rated capacitance of 83 F and rated voltage of 48 V. One electrical equivalent circuit was used to model the electrical behaviour whilst another served to simulate the thermal behaviour. The models were designed to predict the SC operating voltage and temperature, by taking the electric current and ambient temperature as input variables. A five-stage iterative method, applied to three experiments, served to obtain the parameter values for each model. The models were implemented in MATLABSimulink , where they interacted to reciprocally provide information. These models were then validated through a number of tests, subjecting the SC to different current and frequency profiles. These tests included the validation of a bank of supercapacitors integrated into an electric microgrid, in a real operating environment. Satisfactory results were obtained from the electric and thermal models, with RMSE values of less than 0.65 V in all validations.